Chapter 14

Guidelines for the Provision of Anaesthesia Services (GPAS)

Guidelines for the Provision of Neuroanaesthetic Services 2020

NICE has accredited the process used by the Royal College of Anaesthetists to produce its Guidance on the Provision of Anaesthesia Services. Accreditation is valid for five years from 2016.

More information on accreditation can be viewed at www.nice.org.uk/accreditation.
Chapter 14
Guidelines for the Provision of Neuroanaesthetic Services 2020

Authors

Dr James Palmer
Consultant Anaesthetist and
Honorary Senior Lecturer
Salford Royal Hospital
Salford, UK

Dr Sandeep Lakhani
Consultant Anaesthetist and Clinical Director
The Walton Centre
Liverpool, UK

Dr John Andrzejowski
Past President
Neuro Anaesthesia and Critical Care Society
of Great Britain and Ireland

Dr Colin Dryden
Consultant Paediatric Anaesthetist
Alder Hey Children’s Hospital
Liverpool, UK

Dr John Andrzejowski
Past President
Neuro Anaesthesia and Critical Care Society
of Great Britain and Ireland

Dr Colin Dryden
Consultant Paediatric Anaesthetist
Alder Hey Children’s Hospital
Liverpool, UK

Chapter Development Group Members

Dr Ian Tweedie
Consultant Anaesthetist
The Walton Centre
Liverpool, UK

Dr Dan Stubbs
Trainee Anaesthetist
Cambridge, UK

Dr Matthew Gwinnutt
Consultant Anaesthetist
Aintree University Hospital NHS Foundation Trust
and
The Walton Centre NHS Foundation Trust
Liverpool, UK

Prof David Menon
Professor and Head of Division of
Anaesthesia
Cambridge University Hospital
Faculty of Intensive Care Medicine

Dr Catriona Kelly
Consultant Anaesthetist
Royal Victoria Hospital Belfast
Belfast, UK

Dr Linda Stewart
Consultant Anaesthetist
Queen Elizabeth University Hospital
Glasgow, UK

Mr Surajit Basu
Consultant Neurosurgeon
Society of British Neurological Surgeons

Dr Simon Logan
Consultant Neurovascular Anaesthetist
University Hospital of Wales
Cardiff, UK

Acknowledgements

Peer reviewers

Dr Rahul Ratnakar Bajekal
Consultant Anaesthetist
Royal Victoria Infirmary
Newcastle upon Tyne, UK

Dr Davina Ross-Anderson
Consultant Anaesthetist
Royal London Hospital
London, UK

Chapter development technical team

Dr Rachel Evley
Research Fellow
University of Nottingham

Ms Ruth Nichols
Royal College of Anaesthetists

Miss Nicola Hancock
Royal College of Anaesthetists

Ms Carly Melbourne
Royal College of Anaesthetists
Declarations of Interest

All chapter development group (CDG) members, stakeholders and external peer reviewers were asked to declare any pecuniary or non-pecuniary conflict of interest, in line with the guidelines for the provision of anaesthetic services (GPAS) conflict of interest policy as described in the GPAS chapter development process document.

The nature of the involvement in all declarations made was not determined as being a risk to the transparency or impartiality of the chapter development. Where a member was conflicted in relation to a particular piece of evidence, they were asked to declare this and then if necessary removed themselves from the discussion of that particular piece of evidence and any recommendation pertaining to it.

Medico-legal implications of GPAS guidelines

GPAS guidelines are not intended to be construed or to serve as a standard of clinical care. Standards of care are determined on the basis of all clinical data available for an individual case and are subject to change as scientific knowledge and technology advance and patterns of care evolve. Adherence to guideline recommendations will not ensure successful outcome in every case, nor should they be construed as including all proper methods of care or excluding other acceptable methods of care aimed at the same results. The ultimate judgement must be made by the appropriate healthcare professional(s) responsible for clinical decisions regarding a particular clinical procedure or treatment plan. This judgement should only be arrived at following discussion of the options with the patient, covering the diagnostic and treatment choices available. It is advised, however, that significant departures from the national guideline or any local guidelines derived from it should be fully documented in the patient’s case notes at the time the relevant decision is taken.

Promoting equality and addressing health inequalities

The Royal College of Anaesthetists (RCoA) is committed to promoting equality and addressing health inequalities. Throughout the development of these guidelines we have:

- given due regard to the need to eliminate discrimination, harassment and victimisation, to advance equality of opportunity, and to foster good relations between people who share a relevant protected characteristic (as cited under the Equality Act 2010) and those who do not share it
- given regard to the need to reduce inequalities between patients in access to, and outcomes from healthcare services and to ensure services are provided in an integrated way where this might reduce health inequalities.

GPAS guidelines in context

The GPAS documents should be viewed as ‘living documents’. The GPAS guidelines development, implementation and review should be seen not as a linear process, but as a cycle of interdependent activities. These in turn are part of a range of activities to translate evidence into practice, set standards and promote clinical excellence in patient care.

Each of the GPAS chapters should be seen as independent but interlinked documents. Guidelines on the general provision of anaesthetic services are detailed in the following chapters of GPAS:

- chapter 2: guidelines for the provision of anaesthesia services for preoperative assessment and preparation
- chapter 3: guidelines for the provision of anaesthesia services for intraoperative care
- chapter 4: guidelines for the provision of anaesthesia services for postoperative care
These guidelines apply to all patients who require anaesthesia or sedation, and are under the care of an anaesthetist. For urgent or immediate emergency interventions, this guidance may need to be modified as described in chapter 5: guidelines for the provision of emergency anaesthesia.

The rest of the chapters of GPAS apply only to the population groups and settings outlined in the ‘Scope’ section of these chapters. They outline guidance that is additional, different or particularly important to those population groups and settings included in the ‘Scope’. Unless otherwise stated within the chapter, the recommendations outlined in chapters 2–5 still apply.

Each chapter will undergo yearly review, and will be continuously updated in the light of new evidence.

Guidelines alone will not result in better treatment and care for patients. Local and national implementation is crucial for changes in practice necessary for improvements in treatment and patient care.

Aims and objectives

The objective of this chapter is to promote current best practice for service provision in neuroanaesthesia. The guidance is intended for use by anaesthetists with responsibilities for service delivery and healthcare managers.

This guideline does not comprehensively describe clinical best practice in neuroanaesthesia, but is primarily concerned with the requirements for the provision of a safe, effective, well-led service, which may be delivered by many different acceptable models. The guidance on provision of neuroanaesthesia applies to all settings where this is undertaken, regardless of funding. All age groups are included within the guidance unless otherwise stated, reflecting the broad nature of this service.

A wide range of evidence has been rigorously reviewed during the production of this chapter, including recommendations from peer reviewed publications and national guidance where available. However, both the authors and the CDG agreed that there is a paucity of level 1 evidence relating to service provision in neuroanaesthesia. In some cases, it has been necessary to include recommendations of good practice based on the clinical experience of the CDG. We hope that this document will act as a stimulus to future research.

The recommendations in this chapter will support the RCoA’s Anaesthesia Clinical Services Accreditation (ACSA) process.

Scope

Target audience

All staff groups working in neuroanaesthesia, including (but not restricted to) consultant anaesthetists, specialty doctor and associate specialist (SAS) anaesthetists, anaesthetists in training and nurses.

Target population

All ages of patients undergoing neuroanaesthesia.

Healthcare setting

All settings within the hospital in which neuroanaesthesia and neurocritical care are provided.
Neurocritical care

- Guidelines for the Provision of Intensive Care Services (GPICS) covers neurocritical care within critical care settings (i.e. intensive care unit (ITU), high dependency unit (HDU)).
- GPAS covers critical care patients in theatre, the overflow of critical care patients into post anaesthesia care units (PACU), the transfer of critical care patients to and from theatre (or other centres), critical care patients in interventional radiology, magnetic resonance imaging (MRI) hybrid suites etc., as long as they are under the care of the department of anaesthesia.

Clinical management

Key components needed to ensure provision of high quality anaesthetic services for neuroanaesthesia.

Areas of provision considered:
- levels of provision of service, including (but not restricted to) staffing, equipment, support services and facilities.
- areas of special requirement including children, critically ill patients, MRI and pregnant neurosurgical patients.
- training and education
- research and audit
- organisation and administration
- patient information.

Exclusions

Provision of neuroanaesthesia services by a specialty other than anaesthesia

Provision of neurocritical care in an intensive care unit

Clinical issues that will not be covered:
- clinical guidelines specifying how healthcare professionals should care for patients
- national level issues.

Introduction

Neuroanaesthesia encompasses a wide range of emergency and elective work. Anaesthesia for intracranial oncology, vascular and functional surgery, complex spinal surgery, as well as anaesthesia for diagnostic and interventional neuroradiological procedures including MRI scanning all lie within the specialty.

Neuroanaesthesia is mainly delivered in neuroscience units, which may be based in specialist centres, teaching hospitals or district general hospitals. Neuroanaesthesia input is often required as part of multidisciplinary working in complex head and neck cases.

Service demands on the departments of neuroanaesthesia and neuroanaesthetists have changed. Recent developments such as mechanical thrombectomy in the management of ischaemic stroke have the potential to significantly increase service delivery requirements in the future. Staffing departments of neuroanaesthesia and neurocritical care will be influenced by the development of intensive care medicine as a separate specialty.
Chapter 14
Guidelines for the Provision of Neuroanaesthetic Services 2020

The recommendations in this chapter aim to provide guidance for departments of anaesthesia to help them ensure adequate and safe service provision of neuroanaesthesia.

Recommendations

The grade of evidence and the overall strength of each recommendation are tabulated in Appendix 1.

1 Staffing requirements

1.1 In each hospital providing neuroanaesthesia, a neuroanaesthetist should be appointed as the clinical lead (see glossary) to manage service delivery. Adequate time for this role should be included in the lead’s job plan.

1.2 There should be a specified and therefore identifiable group of neuroanaesthetists who cover the neuroanaesthesia service and have sufficient programmed activities to deliver the elective and emergency service.

1.3 An appropriately trained and experienced anaesthetist should be present for all neurosurgical operating lists and interventional neuroradiology sessions, with sufficient consultant-programmed activities to provide adequate supervision and support to trainee anaesthetists and SAS anaesthetists.

1.4 Adequate anaesthetic cover should be available to provide general anaesthesia and sedation for diagnostic radiology sessions, including computed tomography (CT) and magnetic resonance imaging (MRI) scans.

1.5 Hospitals should have well integrated arrangements that ensure anaesthetists covering long neurosurgical procedures or overrunning lists are regularly relieved by an appropriate colleague for refreshment and comfort breaks.

1.6 An appropriately skilled and experienced resident anaesthetist should be available at all times to care for postoperative and emergency patients. The experience and skills necessary to provide this cover are not usually found in training grades below ST3.

1.7 Out of hours, consultants should be immediately available by telephone for advice and be able to attend the hospital within 30 minutes. Suitably skilled and experienced theatre staff should also be available.

1.8 If the consultant on call is not a neuroanaesthetist, there should be a clearly defined and understood process for the provision of specialist advice from neuroanaesthesia colleagues. Where possible, local arrangements should be considered to facilitate this telephone advice in non-neuroscience centres when required.

1.9 Departments that participate in national initiatives, e.g. services for thrombectomy, should review their staffing arrangements to ensure timely emergency cover. Planning for such services should include increased anaesthetic service requirements.

1.10 Anaesthetic assistants should be appropriately skilled and have up to date experience in neuroanaesthesia.

1.11 All post anaesthetic recovery staff looking after neuroscience patients should be able to recognise and describe complications following neuroanaesthesia and possess skills to obtain multidisciplinary assistance and escalate treatment according to departmental protocols and guidance.
1.12 Where departments use post anaesthetic recovery units for extended recovery, the post anaesthetic recovery staff caring for those patients should have the competencies to manage Level 2 critical care patients and there should be a registered nurse/patient ratio of 1:2, as in a Level 2 critical care unit. Departments should have procedures in place to demonstrate the adequacy of medical cover for such extended recovery units.

2 Equipment, services and facilities

General equipment, services and facilities for anaesthesia are described in chapters 2–5. Specialised recommendations for neuroanaesthesia are given below.

Equipment

2.1 Specific equipment for difficult airway management should be available.

2.2 Units should have access to ultra short acting opioids with stable context sensitive half times deliverable by infusion a software accommodating a range of appropriate pharmacokinetic (PK) models to permit intraoperative cardiostability, smooth emergence from anaesthesia and rapid and accurate postoperative neurological assessment.

2.3 Equipment to comply with Association of Anaesthetists standards for anaesthetic monitoring should be available.

2.4 Depth of anaesthesia monitoring, including processed electroencephalography (EEG) monitors, should be available intraoperatively and for transfer.

2.5 Monitoring equipment to detect air embolism and catheters for air aspiration should be available. The use of multiorifice catheters should also be considered.

2.6 Those units conducting functional neurosurgery or surgery for correction of scoliosis, other relevant spinal surgery, or surgery for some cranial lesions, e.g. cerebellopontine angle tumours, should have the appropriate equipment and adequate numbers of trained staff for intraoperative neurophysiological testing. Neuroanaesthetists should be aware of the implications of this testing for anaesthesia including blood pressure management, use of neuromuscular blockade, and the use of total intravenous anaesthesia (TIVA).

2.7 Equipment for safe positioning of patients with a wide range of body habitus should include:
 - appropriate sized mattresses
 - positioning aids to minimise risk of eye injury, nerve injury as well as skin damage, e.g. pressure sores, during potentially prolonged operations
 - fixings to prevent accidental movement during the procedure.

2.8 Equipment to monitor patient temperature and to provide targeted temperature management should be available.

2.9 Availability of a cell salvage system should be considered for procedures associated with a risk of blood loss exceeding 25% of circulating volume. Staff who operate this equipment should receive training in how to operate it and frequently use it to maintain their skills.

Support services

2.10 There should be same day availability of echocardiography investigations, including echo and ultrasound scanning.

2.11 Neuroradiology support should be available 24/7 for interpretation of neuroimaging.
2.12 In hospitals with dedicated neuroanaesthesia service there should be dedicated neurology input available.

2.13 Online imaging results from referring hospitals and within the neuroscience centre should be available locally, and consideration should be given to the provision of remote access for all anaesthetists who provide cover to neuroanaesthesia out of hours.

2.14 There should be onsite laboratory provision, or near patient testing, for blood gases, serum electrolytes, platelet function assay, activated clotting time and thromboelastography, to allow safe management of patients in the operating theatre.22

2.15 Rapid access to other biochemical and haematological investigations and blood transfusion should be provided.

Facilities

2.16 Transfer times between the procedure room and intensive care should be minimised. In new buildings, this may be achieved by having theatres, the intensive care unit and radiological facilities within close proximity and preferably on the same floor. An integrated approach should be taken when planning new facilities.23

2.17 Adequate provision should be made for monitoring patients during such transfer. Current evidence is supportive of the use of processed EEG (pEEG) monitoring where neuromuscular blocking agents are in use, although the limitations of current technology may hamper this.21,24

2.18 Postoperative recovery facilities, with appropriately trained staff and equipment, should be available to all neurosurgical and neuroradiological patients undergoing surgery, both elective and emergency.25

3 **Areas of special requirement**

Children

General recommendations for children’s services are described in chapter 10.

3.1 Whether in a dedicated paediatric neurosurgical unit or not, every child requiring elective neurosurgery should have care delivered by an anaesthetist or anaesthetists who possess the relevant competencies as demanded by the patient’s age, disease and comorbidities.

3.2 New appointees to consultant posts with a significant or whole time interest in paediatric neuroanaesthesia should have successfully completed Advanced Level training in paediatric anaesthesia as defined in the certificate of completion of training (CCT) in anaesthesia.26

3.3 Paediatric and neuroscience centres should consider partnering to help each maintain expertise of the other area.

3.4 In a true emergency situation involving a child requiring urgent neurosurgery for a deteriorating condition admitted to an ‘adult only’ neurosurgical service, the most appropriate surgeon, anaesthetist and intensivist available would be expected to provide life saving care, including emergency resuscitation and surgery.27

3.5 Equipment and accessories appropriate for the age and size of any patient should be available and maintained in accordance with manufacturers’ recommendations.

3.6 Appropriate neurocritical care facilities should be available for all children.
Critically ill patients

Many patients who undergo neurosurgery will be cared for pre or postoperatively in a critical care setting. Many neuroanaesthetists also work in neurocritical care settings. The provision of neurocritical care in a critical care setting is outside the scope of this chapter and is described in the Faculty of Intensive Care Medicine and Intensive Care Society 2016 publication, Guidelines for the provision of intensive care services. Neurocritical care should commence in theatre, therefore standard operating protocols for invasive lines, monitoring and tracheal tubes should reflect local critical care policy. Departments of emergency medicine may also wish to adopt these standard operating procedures.

MRI

Recommendations on the provision of anaesthesia services for imaging services are comprehensively described in chapter 7.

Pregnant neurosurgical patients

Recommendations on the provision of anaesthesia services for the obstetric population are comprehensively described in chapter 5, section 3.

4 Training and education

Opportunities for neuroanaesthesia training occur at ST3–ST4 and, post fellowship, at ST5–ST7. A key learning objective is the initial management and transfer of the brain injured patient. Some trainees (especially those considering a career in neuroanaesthesia or critical care) will opt for a further/longer attachment at an advanced level.

4.1 Consultants and SAS doctors working in neuroanaesthesia should have sufficient regular programmed activities within this field to ensure that their specific skills and experience are maintained.

4.2 Departments should consider providing newly appointed consultants with a mentor to facilitate their development in neuroanaesthesia if they have had limited experience in the specialty as a trainee.

4.3 Consultant anaesthetists who provide out of hours cover to the neuroscience unit, but do not provide neuroanaesthesia in working hours, should be able to demonstrate the maintenance of appropriate skills and knowledge through regular clinical involvement and continuing professional development (CPD).

4.4 Elective neuroanaesthesia for highly specialised procedures that have limited case numbers, e.g. craniofacial procedures, awake neurosurgery, and deep brain stimulation, should be provided by a dedicated subgroup of neuroanaesthetists within the department to ensure that they are able to treat sufficient numbers in order to maintain their competence in these areas.

4.5 The use of simulation training for critical incident scenarios should be available to all members of the multidisciplinary team. Examples include CPR of patients not in the supine position, patients with their head pinned, or if anaesthesia is being provided in an isolated site.

4.6 As trainees spend limited time in the specialty, departments should facilitate the delivery of structured training programmes, developed by the school of anaesthesia, to ensure all core topics are covered. To ensure that their time in neuroanaesthesia is of maximum benefit, departments might consider allowing the trainees some flexibility in list attachments so once
4.7 Trainees should be encouraged to attend other training opportunities within the neuroscience unit, such as grand rounds, radiology and pathology case conferences, and mortality and morbidity meetings.

4.8 Fellowship posts should be identified to allow additional training for those who wish to follow a career in neuroanaesthesia or neurocritical care. These should be suitable for trainees who wish to take time out of training programmes, or for those who are post CCT. Such posts should provide similar or enhanced levels of teaching, training and access to study leave as regular training posts.

5 Organisation and administration

5.1 Much of neurosurgery involves acute work with a high degree of urgency. The provision of associated services should recognise this need and inappropriate delay should not be allowed to occur as a result of lack of key personnel or facilities. Laboratory services, neuroradiology, availability of operating theatre time and sufficient level 1–3 bed provision should all be organised to cope with these demands.

5.2 There should be sufficient numbers of clinical programmed activities in consultants’ job plans to provide cover for all elective neurosurgical operating lists and to provide adequate emergency cover.

5.3 Departments of neuroanaesthesia and neurocritical care, even if part of a large general department, should be provided with adequate secretarial and administrative support.

5.4 Consultants in neuroanaesthesia should be involved in the local and regional planning of any novel neuroscience services e.g. thrombectomy.

5.5 Preadmission clinics for elective neurosurgery should be available, with early input from the department of neuroanaesthesia particularly for high risk cases and those where additional time and discussion are required, e.g. awake craniotomy. All centres should be able to demonstrate that discussion of perioperative risk is routine and that specific risks related to, e.g. prone positioning are communicated.29,30,31

5.6 Hospitals should have systems in place to facilitate multidisciplinary meetings for neuroscience services.32,33

5.7 A World Health Organization (WHO) checklist adapted for neuroscience procedures should be in use.

5.8 The theatre team should all engage in the use of the WHO surgical safety process, commencing with a team brief, and concluding the list with a team debrief.34 Debrief should highlight things done well and also identify areas requiring improvement. Teams should consider including the declaration of emergency call procedures specific to the location as part of the team brief.

5.9 For standalone neuroscience centres, local arrangements should be in place for specialist opinion and review of patients by other disciplines. A named consultant neuroanaesthetist should be identified to facilitate such liaison.

5.10 Hospitals should review their local standards to ensure that they are harmonised with the relevant national safety standards, e.g. National Safety Standards for Invasive Procedures in
England or the Scottish Patient Safety Programme in Scotland. Organisational leaders are ultimately responsible for implementing local safety standards as necessary.

5.11 Local guidance should be developed for the intrahospital transfer of neuroscience patients, based on guidance from Neuro Anaesthesia and Critical Care Society of Great Britain and Ireland (NACCS), Association of Anaesthetists and the Intensive Care Society.

5.12 Each department should appoint a designated liaison consultant responsible for identifying the strategic pathways and logistical pitfalls of the intra-hospital transfer of neurosurgical patients. The appointment should ensure any identified problems are either removed or mitigated.

Postoperative

5.13 Communication with critical care should occur at the earliest possible time (preoperative clinic letter) to enhance the appropriate allocation of beds.

5.14 Standardisation of the handover process can improve patient care by ensuring information completeness, accuracy and efficiency. The use of perioperative care bundles should be considered.

5.15 The 24/7 acute pain service should be available for postoperative neurosurgical patients and be trained to address the specific needs of neurosurgical patients such as those with impaired communication.

5.16 Pain is a useful outcome measure for audit. The utility of specific local and regional techniques for neurosurgical patients is established and pain teams should be aware of these.

Guidelines

5.17 General intraoperative policies outlined in chapter 3 should be held and easily accessible. The following policies for neuroanaesthesia should also be available:

- management and transfer of neuroscience patients
- CPR for patients with their head pinned and for those in the non-supine position
- patients with severe head injury.

6 Financial considerations

Part of the methodology used in this chapter in making recommendations is a consideration of the financial impact for each of the recommendations. Very few of the literature sources from which these recommendations have been drawn have included financial analysis. The vast majority of the recommendations are not new recommendations, but they are a synthesis of already existing recommendations. The current compliance rates with many of the recommendations are unknown, and so it is not possible to calculate the financial impact of the recommendations in this chapter being widely accepted into future practice. It is impossible to make an overall assessment of the financial impact of these recommendations with the currently available information.

6.1 It is recognised that equipment for neurosurgical patients can be expensive and this should be considered through business models.
7 Research, audit and quality improvement

7.1 Departments of neuroanaesthesia should be encouraged to develop research interests, even if not part of an academic department. Research collaboration with other neuroscience disciplines is good practice. Taking part in national anaesthesia and critical care projects is to be encouraged.33,46

7.2 Audit programmes should be developed locally but should include continuous audit of transfer of brain injured patients, neurocritical care capacity and demand, rates of unplanned admission and readmission to the intensive care unit, and the caseload of trainees. In general, local practice should be audited against compliance rates with national and expert consensus guidelines.6,33,47

7.3 Collaborative audit with the other neuroscience disciplines should be encouraged.

7.4 Regular morbidity and mortality meetings should be held jointly with neurosurgeons, interventional neuroradiologists and other relevant stakeholders.

7.5 Departments should be encouraged to maintain active links to national bodies and societies, e.g. NACCS Linkman Scheme, to facilitate national audit and dissemination of information.

8 Implementation support

The Anaesthesia Clinical Services Accreditation (ACSA) scheme, run by the RCoA, aims to provide support for departments of anaesthesia to implement the recommendations contained in the GPAS chapters. The scheme provides a set of standards, and asks departments of anaesthesia to benchmark themselves against these using a self-assessment form available on the RCoA website. Every standard in ACSA is based on recommendation(s) contained in GPAS. The ACSA standards are reviewed annually and republished approximately four months after GPAS review and republication to ensure that they reflect current GPAS recommendations. ACSA standards include links to the relevant GPAS recommendations so that departments can refer to them while working through their gap analyses.

Departments of anaesthesia can subscribe to the ACSA process on payment of an appropriate fee. Once subscribed, they are provided with a ‘College guide’ (a member of the RCoA working group that oversees the process), or an experienced reviewer to assist them with identifying actions required to meet the standards. Departments must demonstrate adherence to all ‘priority one’ standards listed in the standards document to receive accreditation from the RCoA. This is confirmed during a visit to the department by a group of four ACSA reviewers (two clinical reviewers, a lay reviewer and an administrator), who submit a report back to the ACSA committee.

The ACSA committee has committed to building a ‘good practice library’, which will be used to collect and share documentation such as policies and checklists, as well as case studies of how departments have overcome barriers to implementation of the standards, or have implemented the standards in innovative ways.

One of the outcomes of the ACSA process is to test the standards (and by doing so to test the GPAS recommendations) to ensure that they can be implemented by departments of anaesthesia and to consider any difficulties that may result from implementation. The ACSA committee has committed to measuring and reporting feedback of this type from departments engaging in the scheme back to the CDGs updating the guidance via the GPAS technical team.
Chapter 14
Guidelines for the Provision of Neuroanaesthetic Services 2020

9 Patient information

9.1 Each department should provide written information specific to neurosurgical procedures, including relevant risks for surgery conducted in the prone position and postoperative visual loss (POVL).

9.2 All patients (and relatives where appropriate and relevant) should be fully informed about the planned procedure and be encouraged to be active participants in decisions about their care. Recommendations about the provision of information and consent processes outlined in chapter 2 should be followed.48

9.3 Although separate written consent for anaesthesia is not mandatory in the UK, there should be a written record of all discussions, including those of the requesting clinician, with patients undergoing sedation or anaesthesia for diagnostic procedures such as MRI scans. Discussion should include methods of induction, associated risks, side effects and potential benefits of the procedure. It is not the responsibility of the anaesthetist to explain the indications for the procedure.49,50

9.4 The scope of the authority that has been given by a patient should not be exceeded except in an emergency. In an emergency clinical situation in which it is not possible to find out a patient’s wishes, a patient should be treated without their consent, provided the treatment is immediately necessary to save their life or to prevent a serious deterioration of their condition. The treatment provided should be the least restrictive of the patient’s future choices.51,52,53,54

Areas for future development

We recommend that further consideration be given to research in the following areas:

- development of day case neurosurgery including craniotomies
- enhanced recovery for neurosurgical patients
- the use of cardio pulmonary exercise testing (CPEX) and other prognostic tools for neurological patients
- routine use of echocardiography following subarachnoid haemorrhage
- utilisation of physicians’ assistant (anaesthesia) for provision of neuroanaesthesia services in conjunction with consultants
- effectiveness and accuracy of early warning scores in neurosurgical patients
- use of virtual preoperative assessment clinics for assessment of long distance patients in tertiary neurosurgical centres
- use of retrieval teams to transfer emergency patients
- use of pEEG monitors during inter and intrahospital transfer of neurosurgical patients undergoing ventilation of the lungs with neuromuscular blockade.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACSA</td>
<td>Anaesthesia Clinical Services Accreditation</td>
</tr>
<tr>
<td>CCT</td>
<td>Certificate of completion of training</td>
</tr>
<tr>
<td>CDG</td>
<td>Chapter Development Group</td>
</tr>
<tr>
<td>CPD</td>
<td>Continuing professional development</td>
</tr>
<tr>
<td>CPR</td>
<td>Cardiopulmonary resuscitation</td>
</tr>
<tr>
<td>CQC</td>
<td>Care Quality Commission</td>
</tr>
<tr>
<td>EEG</td>
<td>Electroencephalography</td>
</tr>
<tr>
<td>GMC</td>
<td>General Medical Council</td>
</tr>
<tr>
<td>GPAS</td>
<td>Guidelines for the provision of anaesthetic services</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic resonance imaging</td>
</tr>
<tr>
<td>NACCS</td>
<td>Neuro Anaesthesia & Critical Care Society of Great Britain and Ireland</td>
</tr>
<tr>
<td>NHS</td>
<td>National Health Service</td>
</tr>
<tr>
<td>NICE</td>
<td>National Institute for Health and Care Excellence</td>
</tr>
<tr>
<td>pEEG</td>
<td>Processed EEG</td>
</tr>
<tr>
<td>RCoA</td>
<td>Royal College of Anaesthetists</td>
</tr>
<tr>
<td>RCTs</td>
<td>Randomised controlled trials</td>
</tr>
<tr>
<td>SAS</td>
<td>Staff grade, associate specialist and specialty doctors</td>
</tr>
<tr>
<td>TIVA</td>
<td>Total intravenous anaesthesia</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>

Glossary

Clinical lead - SAS doctors undertaking lead roles should be autonomously practicing doctors who have competence, experience and communication skills in the specialist area equivalent to consultant colleagues. They should usually have experience in teaching and education relevant to the role and they should participate in Quality Improvement and CPD activities. Individuals should be fully supported by their Clinical Director and be provided with adequate time and resources to allow them to effectively undertake the lead role.

Immediately – Unless otherwise defined, ‘immediately’ means within five minutes.

Neuroanaesthetist – Neuroanaesthetists will have regular neuroscience sessions (most often at least 2 sessions per week), be involved in neuroscience M&Ms and carry out regular CPD in this area.
References
1 Guidelines for the provision of intensive care services. FICM, 2016 (bit.ly/2PPiJgQ)
2 Farling PA. The neuroanaesthesia workforce in Great Britain and Ireland. Anaesth 2003; 58: 17-23
4 Working arrangements for consultant anaesthetists in the United Kingdom. AAGBI, 2011 (bit.ly/2meMUE5)
7 Fatigue and anaesthetists. AAGBI, 2014 (bit.ly/1UlL360)
8 Willoughby L, Morgan R. Neuroanaesthetists’ experience of workload-related issues and long-duration cases. Anaesth 2005; 60: 151-4
9 Guidance on the provision of anaesthesia services for intraoperative care. RCoA, London 2019
12 Standards for providing safe acute ischaemic stroke thrombectomy services. BASP, 2015 (bit.ly/2FTAkPp)
13 Position statement on workforce requirements in critical care units. EICCCNa, 2007 (bit.ly/2vLtb0N)
21 Blood transfusion. NICE, 2015 (bit.ly/2p7UvTu)
23 Gandhe RU, Bhave CP. Intraoperative magnetic resonance imaging for neurosurgery - an anaesthesiologist’s challenge. Indian Journal of Anaesthesia 2018; 62: 411-7
27 Joint statement from the Society of British Neurological Surgeons and the Royal College of Anaesthetists regarding the provision of emergency paediatric neurosurgical services. RCoA, 2010 (bit.ly/2poCfls)
29 Mercer SJ, Guha A, Ramesh VJ. The P-POSSUM scoring system for predicting the mortality of neurosurgical patients undergoing craniotomy: further validation of usefulness and application across healthcare systems. *Indian J Anaesth* 2013; 57: 587-91

30 Nguyen-Lu N, Reddy U, Luoma A. To prone or not to prone? What are we telling our patients? An audit on documentation of consent for prone positioning during neurosurgery. *J Neurosur Anesthesiol* 2012; 24: 495

31 Hawkins J. Consent & prone positioning in neuroanaesthesia: a survey of practice in a tertiary referral centre. *Anaesthesia* 2018; 73 [suppl 3]: 101

36 Scottish Patient Safety Programme [bit.ly/2Ik2P7b]

38 Olm-Shipman C, Yagoda D, Tehan T et al. Improving communication during patient transfers between the operating room and neuroscience intensive care unit. *Neurocrit Care* 2011; 14(S1):S196

39 Guidelines for the provision of postoperative care. *RCoA*, 2019

43 Leslie K, Troedel S, Irwin K et al. Quality of recovery from anesthesia in neurosurgical patients. *Anesthesiol 2003; 99: 1158-65*

45 Holland CM, Lovasik BP, Howard BM, McClure EW, Samuels OB, Barrow DL. Interhospital transfer of neurological patients: implications of timing on hospital course and clinical outcomes. *Neurosurgery 2017; 81: 450-7*

48 Guidelines for the provision of anaesthesia services for preoperative assessment and preparation. *RCoA*, 2019

54 Mental Capacity Act (Northern Ireland) 2016 [bit.ly/2wDAPvr]
Appendix 1: Recommendations grading

The grading system is outlined in the methodology section of this chapter. The grades for each of the recommendations in this chapter are detailed in the table below:

<table>
<thead>
<tr>
<th>Recommendation Number</th>
<th>Level of Evidence</th>
<th>Strength of Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>B</td>
<td>Strong</td>
</tr>
<tr>
<td>1.2</td>
<td>B</td>
<td>Strong</td>
</tr>
<tr>
<td>1.3</td>
<td>B</td>
<td>Strong</td>
</tr>
<tr>
<td>1.4</td>
<td>B</td>
<td>Strong</td>
</tr>
<tr>
<td>1.5</td>
<td>B</td>
<td>Strong</td>
</tr>
<tr>
<td>1.6</td>
<td>B</td>
<td>Strong</td>
</tr>
<tr>
<td>1.7</td>
<td>B</td>
<td>Strong</td>
</tr>
<tr>
<td>1.8</td>
<td>B</td>
<td>Strong</td>
</tr>
<tr>
<td>1.9</td>
<td>B</td>
<td>Strong</td>
</tr>
<tr>
<td>1.10</td>
<td>B</td>
<td>Strong</td>
</tr>
<tr>
<td>1.11</td>
<td>B</td>
<td>Strong</td>
</tr>
<tr>
<td>1.12</td>
<td>B</td>
<td>Strong</td>
</tr>
<tr>
<td>2.1</td>
<td>GPP</td>
<td>Strong</td>
</tr>
<tr>
<td>2.2</td>
<td>GPP</td>
<td>Strong</td>
</tr>
<tr>
<td>2.3</td>
<td>B</td>
<td>Strong</td>
</tr>
<tr>
<td>2.4</td>
<td>B</td>
<td>Strong</td>
</tr>
<tr>
<td>2.5</td>
<td>C</td>
<td>Strong</td>
</tr>
<tr>
<td>2.6</td>
<td>B</td>
<td>Strong</td>
</tr>
<tr>
<td>2.7</td>
<td>GPP</td>
<td>Strong</td>
</tr>
<tr>
<td>2.8</td>
<td>GPP</td>
<td>Strong</td>
</tr>
<tr>
<td>2.9</td>
<td>C</td>
<td>Strong</td>
</tr>
<tr>
<td>2.10</td>
<td>GPP</td>
<td>Strong</td>
</tr>
<tr>
<td>2.11</td>
<td>GPP</td>
<td>Strong</td>
</tr>
<tr>
<td>2.12</td>
<td>GPP</td>
<td>Strong</td>
</tr>
<tr>
<td>2.13</td>
<td>GPP</td>
<td>Strong</td>
</tr>
<tr>
<td>2.14</td>
<td>GPP</td>
<td>Strong</td>
</tr>
<tr>
<td>2.15</td>
<td>GPP</td>
<td>Aspirational</td>
</tr>
<tr>
<td>2.16</td>
<td>GPP</td>
<td>Strong</td>
</tr>
<tr>
<td>2.17</td>
<td>GPP</td>
<td>Strong</td>
</tr>
<tr>
<td>2.18</td>
<td>B</td>
<td>Strong</td>
</tr>
<tr>
<td>3.1</td>
<td>GPP</td>
<td>Strong</td>
</tr>
<tr>
<td>3.2</td>
<td>C</td>
<td>Strong</td>
</tr>
<tr>
<td>3.3</td>
<td>GPP</td>
<td>Strong</td>
</tr>
<tr>
<td>Recommendation Number</td>
<td>Level of Evidence</td>
<td>Strength of Recommendation</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>3.4</td>
<td>GPP</td>
<td>Strong</td>
</tr>
<tr>
<td>3.5</td>
<td>GPP</td>
<td>Strong</td>
</tr>
<tr>
<td>3.6</td>
<td>GPP</td>
<td>Strong</td>
</tr>
<tr>
<td>4.1</td>
<td>GPP</td>
<td>Strong</td>
</tr>
<tr>
<td>4.2</td>
<td>GPP</td>
<td>Strong</td>
</tr>
<tr>
<td>4.3</td>
<td>GPP</td>
<td>Strong</td>
</tr>
<tr>
<td>4.4</td>
<td>GPP</td>
<td>Strong</td>
</tr>
<tr>
<td>4.5</td>
<td>C</td>
<td>Strong</td>
</tr>
<tr>
<td>4.6</td>
<td>GPP</td>
<td>Weak</td>
</tr>
<tr>
<td>4.7</td>
<td>GPP</td>
<td>Strong</td>
</tr>
<tr>
<td>4.8</td>
<td>GPP</td>
<td>Strong</td>
</tr>
<tr>
<td>5.1</td>
<td>GPP</td>
<td>Strong</td>
</tr>
<tr>
<td>5.2</td>
<td>GPP</td>
<td>Strong</td>
</tr>
<tr>
<td>5.3</td>
<td>GPP</td>
<td>Strong</td>
</tr>
<tr>
<td>5.4</td>
<td>GPP</td>
<td>Strong</td>
</tr>
<tr>
<td>5.5</td>
<td>B</td>
<td>Strong</td>
</tr>
<tr>
<td>5.6</td>
<td>GPP</td>
<td>Strong</td>
</tr>
<tr>
<td>5.7</td>
<td>GPP</td>
<td>Strong</td>
</tr>
<tr>
<td>5.8</td>
<td>C</td>
<td>Strong</td>
</tr>
<tr>
<td>5.9</td>
<td>GPP</td>
<td>Weak</td>
</tr>
<tr>
<td>5.10</td>
<td>C</td>
<td>Strong</td>
</tr>
<tr>
<td>5.11</td>
<td>C</td>
<td>Strong</td>
</tr>
<tr>
<td>5.12</td>
<td>GPP</td>
<td>Strong</td>
</tr>
<tr>
<td>5.13</td>
<td>GPP</td>
<td>Strong</td>
</tr>
<tr>
<td>5.14</td>
<td>B</td>
<td>Weak</td>
</tr>
<tr>
<td>5.15</td>
<td>GPP</td>
<td>Strong</td>
</tr>
<tr>
<td>5.16</td>
<td>B</td>
<td>Strong</td>
</tr>
<tr>
<td>5.17</td>
<td>GPP</td>
<td>Strong</td>
</tr>
<tr>
<td>6.1</td>
<td>GPP</td>
<td>Strong</td>
</tr>
<tr>
<td>7.1</td>
<td>B</td>
<td>Weak</td>
</tr>
<tr>
<td>7.2</td>
<td>B</td>
<td>Strong</td>
</tr>
<tr>
<td>7.3</td>
<td>GPP</td>
<td>Strong</td>
</tr>
<tr>
<td>7.4</td>
<td>GPP</td>
<td>Strong</td>
</tr>
<tr>
<td>7.5</td>
<td>GPP</td>
<td>Strong</td>
</tr>
<tr>
<td>9.1</td>
<td>GPP</td>
<td>Strong</td>
</tr>
<tr>
<td>9.2</td>
<td>GPP</td>
<td>Strong</td>
</tr>
<tr>
<td>9.3</td>
<td>C</td>
<td>Weak</td>
</tr>
</tbody>
</table>
Chapter 14
Guidelines for the Provision of Neuroanaesthetic Services 2020

<table>
<thead>
<tr>
<th>Recommendation Number</th>
<th>Level of Evidence</th>
<th>Strength of Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.4</td>
<td>C</td>
<td>Strong</td>
</tr>
</tbody>
</table>

About these guidelines

Methodology

The process by which this chapter has been developed has been documented within the GPAS chapter development process document.

The evidence included in this chapter is based on a systematic search of the literature. Abstracts were independently screened by two investigators and reviewed against inclusion and exclusion criteria. Data were extracted by one investigator in accordance with predefined criteria. The review objective was to determine the key components needed to ensure provision of high-quality day surgery services for patients who have undergone surgery and/or interventions which involve anaesthesia.

Search strategy

Searches were performed on Embase (1980 to 2015), Ovid MEDLINE (1946 to present), CINAHL and Cochrane Library, for the literature search strategy, outcomes, databases, criteria for inclusion and exclusion of evidence (for the full neuroanaesthesia chapter search protocol please contact the RCoA). A hand search of the literature was also conducted by the authors using the reference lists of relevant original articles and review articles.

The literature search was performed in September 2016.

The authors and researcher independently reviewed the abstracts and titles of the studies found in the initial search. After agreement on the primary selection of papers, full-text versions were accessed and reviewed against the following predefined inclusion and exclusion criteria. The full-text papers were also reviewed by the Chapter Development Group (CDG) for suitability. The final list of publications used can be found in the references.

Inclusion criteria

The literature review considered studies that included the following patient population with all of the inclusion criteria listed below:

- all patients undergoing elective or emergency anaesthesia
- all staff groups working within neuroanaesthesia, under the responsibility of an anaesthetic clinical director, including (but not restricted to) consultant anaesthetists, SAS anaesthetists, anaesthetists in training, nurses, operating department practitioners, surgeons, pharmacists, general practitioners, radiologists and radiographers.

Exclusion criteria

The literature review used the following exclusion criteria:

- provision of neuroanaesthesia service provided by a speciality other than anaesthesia.

Data Extraction and Analysis

Data were extracted by the authors using a proforma. The study characteristics data included:

- the journal and country of publication
The patient characteristics data extracted were: age, gender and type of surgery. The analysis considers studies that included any clinical outcome, including (but not restricted to) survival, length of stay, critical care or hospital, morbidity, adverse effects and complications.

The results of the literature review can be seen below:

Preferred Reporting Systems for Systematic Review and Meta-analysis (PRISMA) flow chart

- Records identified through database searching
 - (n = 33765)
- Additional records identified through other sources
 - (n = 22)
- Records after screening of titles
 - (n = 289)
- Abstracts screened
 - (n = 234)
- Full-text articles assessed for eligibility
 - (n = 188)
- Full-text articles included in final document
 - (n = 42)

- Duplicates
 - (n = 55)
- Records excluded
 - (n = 46)
Chapter 14
Guidelines for the Provision of Neuroanaesthetic Services 2020

The evidence that is included in this chapter has been graded according to a grading system adapted from NICE and outlined below:

<table>
<thead>
<tr>
<th>Level</th>
<th>Type of evidence</th>
<th>Grade</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ia</td>
<td>Evidence obtained from a single large/multicentre randomised controlled trial, a meta-analysis of randomised controlled trials or a systematic review with a low risk of bias</td>
<td>A</td>
<td>At least one randomised controlled trial as part of a body of literature of overall good quality and consistency addressing the specific recommendation (evidence level I) without extrapolation</td>
</tr>
<tr>
<td>Ib</td>
<td>Evidence obtained from meta-analyses, systematic reviews of RCTs or RCTs with a high risk of bias</td>
<td>B</td>
<td>Well-conducted clinical studies but no high-quality randomised clinical trials on the topic of recommendation (evidence levels Ib, II or III); or extrapolated from level Ia evidence</td>
</tr>
<tr>
<td>IIa</td>
<td>Evidence obtained from at least one well-designed controlled study without randomisation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIb</td>
<td>Evidence obtained from at least one well-designed quasi-experimental study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIc</td>
<td>Evidence obtained from case control or cohort studies with a high risk of confounding bias</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Evidence obtained from well-designed non-experimental descriptive studies, such as comparative studies, correlation studies and case studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>Evidence obtained from expert committee reports or opinions and/or clinical experiences of respected authorities</td>
<td>C</td>
<td>Expert committee reports or opinions and/or clinical experiences of respected authorities (evidence level IV) or extrapolated from Level I or II evidence. This grading indicates that directly applicable clinical studies of good quality are absent or not readily available</td>
</tr>
<tr>
<td>UG</td>
<td>Legislative or statutory requirements</td>
<td>M</td>
<td>This grading indicates that implementation of this recommendation is a statutory requirement, or is required by a regulatory body (e.g. CQC, GMC)</td>
</tr>
<tr>
<td>GPP</td>
<td>Recommended good practice based on the clinical experience of the CDG</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Strengths and limitations of body of evidence

Most of the published evidence on neuroanaesthesia is descriptive. There are publications describing aspects of this process based on expert opinion.

The limitations of the evidence are:
- the ‘unmeasurables’ (attitudes, behaviour, motivation, leadership, teamwork)
- few randomised controlled trials; studies frequently use mixed populations of emergency and elective patients, or all emergency patients grouped together despite different underlying diagnoses
- papers often examine a single intervention within complex system or bundle
- papers are often examining small numbers and/or patients from a single centre
- poor use of outcome measures, frequently concentrating on easily measured short term outcomes which are not patient centred
- generally, a paucity of long-term follow up
- there is no standard definition used of ‘high risk’
- use of different risk-scoring systems
- decrease in outcome over time and geography when ‘good papers’ are used in quality improvement programmes
- application of international studies in systems with either more or less resources than the UK into NHS practice
- older studies may no longer be applicable within the NHS
- very few studies included any analysis of financial implications
- evidence was mainly based on literature graded III and IV.

Methods used to arrive at recommendations

Recommendations were initially drafted based on the evidence by the authors for the chapter. These were discussed with the CDG, and comments were received both on the content and the practicality of the recommendations. The level of evidence that was the basis for each recommendation was graded according to a grading system, and the recommendation was then graded taking into account the strength of the evidence and the clinical importance using a recommendations criteria form (see GPAS Chapter Development Process Document).

Recommendations were worded using the following system of categorisation:
<table>
<thead>
<tr>
<th>Strength</th>
<th>Type of evidence</th>
<th>Wording</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandatory</td>
<td>The evidence supporting the recommendation includes at least one with an ‘M’ grading</td>
<td>Wording should reflect the mandatory nature of the recommendation, ie ‘must’</td>
</tr>
<tr>
<td>Strong</td>
<td>Confidence that for the vast majority of people, the action will do more good than harm (or more harm than good)</td>
<td>Wording should be clearly directive ‘should’ or ‘should not’</td>
</tr>
<tr>
<td>Weak</td>
<td>The action will do more good than harm for most patients, but may include caveats on the quality or size of evidence base or patient preferences</td>
<td>Wording should include ‘should be considered’</td>
</tr>
<tr>
<td>Aspirational</td>
<td>While there is some evidence that implementation of the recommendation could improve patient care, either the evidence or the improvement is not proven or substantial</td>
<td>Wording should include ‘could’</td>
</tr>
<tr>
<td>Equipoise</td>
<td>There is no current evidence on this recommendation’s effect on patient care</td>
<td>Wording should include ‘there is no evidence of this recommendation’s effect on patient care’</td>
</tr>
</tbody>
</table>

Consultation

The chapter has undergone several rounds of consultation. The multidisciplinary CDG formed the first part of the consultation process. The authors and GPAS Editorial board identified key stakeholder groups. Where stakeholders are represented by an association or other medical college, they were asked to nominate delegates to join the CDG. The GPAS Chapter Development Process Document explains the recruitment process for those CDG members who were not directly nominated. The CDG members were involved in drafting the recommendations, and were provided with an opportunity to comment on all subsequent drafts of the chapter.

The chapter underwent peer review. Peer reviewers were identified by the GPAS Editorial Board or Professional Standards Committee (PSC). Nominees were either anaesthetists of consultant grade or were nominated by a key stakeholder group. Nominees had not had any involvement in the development of GPAS to date and were asked to comment upon a late draft of the chapter.

Following peer review, the chapter was reviewed by the College’s PSC and the College’s Lay Committee. Comments from all groups were considered and incorporated into a consultation draft.

The consultation draft of this chapter was circulated for public consultation from 15 January to 12 February 2018. As well as being made available on the College’s website and promoted via Twitter and the President’s newsletter to members, the draft was also circulated to all key stakeholder groups identified by the authors and the College. A list of organisations contacted by the College is available from the GPAS team at the College: GPAS@rcoa.ac.uk.
The editorial independence of GPAS

The development of GPAS is wholly funded by the Royal College of Anaesthetists. However, only the GPAS technical team and the GPAS researcher are paid directly by the College for their work on GPAS: the GPAS Editors’ employing organisation receives two programmed activities (PA) backfill funding. All funding decisions by the College are made by the chief executive officer, in collaboration with the senior management team and College Council.

The authors of the chapters are all fellows of the Royal College of Anaesthetists. Members of College Council cannot act as chair of any CDG, as this individual has the deciding vote under the consensus method of decision making used in the chapters. Where College Council members have been involved in chapter development, this has been declared and recorded.

All persons involved in the development of GPAS are required to declare any pecuniary or non-pecuniary conflict of interest, in line with the GPAS conflict of interest policy as described in the GPAS Chapter Development Process Document. Any conflicts of interest are managed on a case-by-case basis to maintain the transparency and impartiality of the GPAS document. The conflicts, and the way they were managed, are outlined at the beginning of the chapter.

The role of the GPAS Editorial Board and CQRB

The overall development of the entire GPAS document is overseen by the CQRB of the Royal College of Anaesthetists, which includes representatives from all grades of anaesthetist and from clinical directors, and which also has lay representation.

Responsibility for managing the scope of the document and providing clinical oversight to the project technical team is delegated by the CQRB to the GPAS Editorial Board, which includes individuals responsible for the various internal stakeholders (see above for membership). On the inclusion/exclusion of specific recommendations within each chapter, the Editorial Board can only provide advice to the authors. In the event of disagreement between the authors, the majority rules consensus method is used, with the GPAS Editor holding the deciding vote.

Both of these groups, along with the College’s Lay Committee, review each chapter and provide comment prior to public consultation and are responsible for signoff before final publication. In the event of disagreement, consensus is reached using the majority rules consensus method, with the chair of CQRB holding the deciding vote.

Updating these guidelines

This chapter will be updated for republication in January 2021.

Guidelines will be updated on an annual basis. The researcher will conduct the literature search again using the same search strategy to uncover any new evidence and members of the public will be able to submit new evidence to the GPAS project team. Where new evidence is uncovered, the lead author will decide whether the recommendations that were originally made are still valid in light of this new evidence.

If new evidence contradicts or strengthens existing recommendations, the authors decide whether or not to involve the remainder of the CDG in revising the recommendations accordingly.

If new evidence agrees with existing recommendations, then a reference may be added but no further action is required.

If there is no new evidence then no action is required.

This chapter is due to be fully reviewed for publication in January 2023.
Every five years guidance will be submitted to a full review involving reconvening the CDG (or appointment of a new, appropriately qualified CDG), and the process described in the methodology section of this chapter begins again.