Ultrasound in Anaesthesia and Intensive Care:

A Guide to Training

Published by
The Association of Anaesthetists of Great Britain & Ireland
The Royal College of Anaesthetists
The Intensive Care Society

July 2011
Membership of the working party

(Details correct at the start of the working party process)

Dr N M Denny AAGBI (Chair)
Dr K Fox British Society of Echocardiography
Dr C Gillbe AAGBI
Dr A W Harrop-Griffiths AAGBI
Dr M Jones Society for Acute Medicine
Dr N Love Group of Anaesthetists in Training
Dr P MacNaughton Intensive Care Society
Dr R McWilliams Royal College of Radiologists
Dr B Nicholls Regional Anaesthesia (UK)
Dr P Nightingale Royal College of Anaesthetists
Dr J Pilcher British Medical Ultrasound Society
Dr S Price Intensive Care Society and British Society of Echocardiography
Mr J Sloan College of Emergency Medicine
Dr S Ward British Pain Society

The Association of Anaesthetists of Great Britain & Ireland
21 Portland Place, London, W1B 1PY
Tel: 020 7631 1650
Fax: 020 7631 4352
Email: info@aagbi.org
Website: www.aagbi.org

The Royal College of Anaesthetists
Churchill House, 35 Red Lion Square, London, WC1R 4SG
Tel: 020 7092 1500
Fax: 020 7092 1730
Email: info@rcoa.ac.uk
Website: www.rcoa.ac.uk

The Intensive Care Society
Churchill House, 35 Red Lion Square, London, WC1R 4SG
Tel: 020 7280 4350
Fax: 020 7280 4369
Email: info@ics.ac.uk
Website: www.ics.ac.uk
Contents

1. Introduction 3
2. Clinical governance and ultrasound 10
3. Recommended essential ultrasound knowledge and skills 11
4. Regional anaesthesia and pain medicine 15
5. Vascular procedures 21
6. Thoracic ultrasound 25
7. Abdominal ultrasound 30
8. Echocardiography 34
9. References 40
 Appendix 1 – RCoA DOPS form 43

To be reviewed in 2016

© The Association of Anaesthetists of Great Britain & Ireland, The Royal College of Anaesthetists and The Intensive Care Society 2011
1. Introduction

This document presents a goal for the delivery of training of procedures using ultrasound in anaesthesia and critical care. The document not only sets out a practice-based curriculum for those who already hold a Certificate of Completion of Training (CCT) but also describes how the trainee might organise their own training within the Royal College of Anaesthetists’ (RCoA’s) CCT curriculum or Out-of-Programme Training (OOPT) to match these aspirations.

Over the last 10 years, ultrasound has developed into an indispensable tool in anaesthesia and intensive care. The combination of National Institute of Health and Clinical Excellence (NICE) guidance for central venous access [1] and the availability of small, portable, ‘point of care’ machines has led to the introduction and increasingly widespread use of ultrasound in clinical practice. More recently, further NICE guidance on the use of ultrasound for epidurals [2] and regional anaesthesia [3] has ensured that ultrasound is now deeply embedded within anaesthetic practice. Other uses now include: thoracic scanning for diagnosis and treatment of pleural effusions and pneumothoraces; abdominal scanning (Focused Assessment with Sonography in Trauma - FAST) looking for intra-abdominal fluid; and focused transthoracic echocardiography in non-traumatic resuscitation (Focused Echocardiography in Emergency Life support – FEEL).

The widespread introduction of ultrasound has brought with it many concerns relating to competency and training. Ultrasound is not new to medicine but its use in anaesthesia is. With the greater availability of machines and an increasing number of clinical indications, it is important to remember that there is a requirement for employing hospitals to ensure that clinicians are competent in the use of any equipment used by an employee [4]. Ultrasound has a distinct learning curve and trainee usage is characterised by common novice behaviour and mistakes [5,6].

The aim of this document is to produce a set of broad guidelines for current trainees and those who completed their formal training programmes before the introduction of ultrasound. Whilst the core knowledge and skills required to perform ultrasound are identical in both groups, it is recognised that the competencies will be gained in different ways. These can be termed the ‘trainee-based College programme pathway’ and the ‘practice pathway’ for non-trainees.

Recommendations for the use of ultrasound for non–radiologists have been published by the Royal College of Radiologists (2005) [7], the European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) [8] and the College of Emergency Medicine (CEM) [9]. The importance of these recommendations is that they specify both a training syllabus and requirements that should be met by an individual using ultrasound.
Training should consist of both theoretical and practical aspects, and be modular in nature, allowing trainees to acquire different levels of competency depending upon the practical skills needed, with competency assessment and multidisciplinary training. The levels of training have been broadly divided into three (Levels 1, 2 and 3), the boundaries of which are not precise and are difficult to define and, as such, should be seen as a guide to different levels of competence and experience. It is important to realise that an appropriate level of training in ultrasound is one that allows for the provision of a safe and effective ultrasound service. This may be purely diagnostic, predominately interventional or a clinically-focused service.

Equivalent training and experience: the ‘Grandfather Clause’

This working party recognises that many practitioners have received *ad hoc* training and have learned ultrasound techniques ‘on the job’. While this pathway is not prospectively supported, it is recognised that for many such individuals their knowledge and experience makes them entirely appropriate practitioners and teachers of others. Furthermore, clinicians from specialties other than anaesthesia or intensive care medicine may hold equivalent qualifications or training. The recognition and awarding of an equivalent qualification to one achievable by a structured training programme is termed a ‘Grandfather Clause’. Failure to recognise such individuals is likely to lead to a loss of training opportunities for others, and loss of enthusiasm by the individual. In general, the working party therefore encourages individuals to seek recognition rather than making this process obstructive.

The following should be included in any application for recognition under these circumstances:

- A description of the approximate number of scans performed and any relevant training experience obtained, e.g. sabbatical or work placements.
- A description of the current job plan outlining the role ultrasound plays and the typical range of scanning techniques used with representative frequencies.
- Confirmation that the individual is in a permanent UK NHS non-training post of Staff Grade, Associate Specialist, Specialty Doctor or Consultant, including any UK recognised qualifications of training, e.g. FRCA.
- A declaration from the Service Director, Governance Lead or Ultrasound Lead confirming substantial experience in ultrasound and ongoing use in clinical practice.
- Any equivalent training or recognition awarded by other specialties, e.g. CEM Level 1 and 2 ultrasound, British Society of Echocardiography (BSE) certification, or similar.
- Any further information demonstrating experience and knowledge of ultrasound, e.g. developing a service.
There is at present no specific body to award such ‘Grandfather’ status, but with the increased development of ultrasound groups within hospitals to monitor the use and training of non-radiology ultrasound, these groups may fulfil this role. In awarding equivalence of training, clinicians need to ensure they keep up to date with developments in ultrasound and, where feasible, obtain appropriate qualifications in their sphere of practice. The status of ‘Grandfather’ will need to be agreed by the head of that individual’s department and the head of Clinical Governance. This ‘Grandfather Clause’ should be withdrawn in the future when robust training capacity exists.

Training levels
The concept of levels of training is a way of standardising training requirements across specialties. These levels are a guide to training and do not necessarily correspond to individual College recommendations and curriculum needs, e.g. CEM Level 1 is the standard of knowledge and practice that Emergency Medicine doctors should have in the future. This is also the case in anaesthesia and intensive care, where the use of ultrasound is not routinely practised or taught in all departments. Currently, it is likely that only a few trainees in anaesthesia or intensive care will be trained to be a Level 1 practitioner in all the aspects of ultrasound applicable to their clinical practice. Therefore, although Level 1 is the desired level of training for all trainees, it is at present too comprehensive to be achievable within the current RCoA curriculum.

Level 1 – core training
This is the expected standard of knowledge and practice that anaesthetic and intensive care consultants should have in the future and that should be achievable during normal postgraduate specialist training.

Level 1 practice may be defined by the following generic competencies:

- Ability to perform common examinations and interventions safely and accurately.
- Ability to recognise normal and abnormal anatomy and pathology.
- Ability to use ultrasound in real time to guide common invasive procedures (Level 1 specific to anaesthesia and intensive care).
- Ability to recognise when referral for a second opinion is indicated.
- Ability to understand the benefits of ultrasound imaging and its value and relationship to other imaging modalities used in anaesthesia and intensive care, e.g. x-ray.

In the future, Level 1 will be considered to be core and fundamental to the practice of anaesthesia and intensive care, and the components therefore considered essential parts of a specialist training programme. At present there is no restriction on the training that can be achieved within an anaesthetic and intensive care training programme, and it may be common to find individuals who have Level 1
training in certain areas and Level 2 training in others at the time of completion of training and award of a CCT.

Level 2 – extended training
This is a more advanced level of practice and can be considered extended. This would be the expected level of practice for those with a special interest in ultrasound. A Level 2 practitioner would have the following abilities:

- Significant experience of Level 1 practice, e.g. >12 months.
- Ability to perform the complete range of examinations in the area of practice.
- Ability to recognise significant pathology within the relevant organ system.
- Ability to use ultrasound to guide the full range of procedures in the particular area of practice.
- Ability to act as mentor and trainer for Level 1 practitioners.
- Ability to accept referrals from Level 1 practitioners.

Level 2 practice is likely to require a period of additional training and experience beyond that obtained during normal postgraduate specialist training and the RCoA’s requirements for a CCT. A modular nature of practice is proposed such that an individual may be a Level 2 practitioner in one area of ultrasound practice, e.g. vascular access, and Level 1 in another, e.g. regional anaesthesia.

Level 3 – advanced training
This is an advanced level of practice and is equivalent to a consultant radiologist with a special interest in ultrasound or a cardiologist specialising in echocardiography. A Level 3 practitioner will be able to accept referrals from Level 2 practitioners and perform specialised examinations. They are involved in all areas of ultrasound training and may undertake research within the field of ultrasound. This level of practice is unlikely to be relevant to the majority of those practising anaesthesia and intensive care.

Training
Although the training pathway may differ between established specialists and trainees, the core content of the programme will be the same. The outcomes should also be the same for anaesthetists and others undertaking similar procedures.

Theoretical training
Preliminary theoretical training should cover relevant anatomy, the physics of ultrasound, levels and sophistication of equipment, image recording and reporting, artefacts and the relevance of other imaging. This element of training may be delivered by existing national courses, local ‘in-house’ courses or by the use of e-learning modules.

Practical training
Practical training should include both training with phantoms and models before
using ultrasound in a clinical situation. Practical experience should be gained under the guidance of a named supervisor trained in ultrasound. Practical training should focus on demonstrating competence rather than performance of an arbitrary number of procedures undertaken. However, to ensure optimal training and timely acquisition of the required competencies, practical training should involve frequent supervised examinations. In all cases involving a patient, an explanation of the technique and consent must be obtained before initiating a practical procedure; this is even more important in a training situation. A logbook of all training cases should be kept and ideally should include a number of more detailed case studies. The ability to store ultrasound images (still and video) for later review is an invaluable part of training and is essential in certain areas such as echocardiography. The trainee should ensure that all examinations performed during training are logged. Examinations should concentrate on the core areas of practice. A competency assessment sheet should be completed for each area of practice during the course of training, as it will help to determine in which area(s) the trainee can practise independently.

Generic training

Training pathways
The training pathway will differ between those who are established anaesthetists with no previous ultrasound experience, those who have been practising ultrasound without formal competency assessment, those who have achieved formal competency in other modules, and specialist trainees in anaesthetics.

Clinical practice pathway
For established anaesthetists, with no previous experience of ultrasound, practical training will depend upon exposure to it and should be based on a combination of in-house and external courses. A basic skills and knowledge course (outlined below) is mandatory before practising on patients. All departments need to develop a training programme that is appropriate for them, but the following strategies are useful.

1. Complete basic knowledge and skills course; consider e-learning modules or web-based courses.
2. Attendance at a dedicated ‘hands-on’ ultrasound course.
3. Practise of normal scanning on colleagues or volunteers.
4. Use of web-based courses and textbooks.
5. Use ultrasound on patients, with their consent, under supervision by a recognised trainer.
6. Use of commercially available or ‘home-made’ phantoms or meat products to practise ultrasound-guided needle co-ordination.
7. Clinical practice should be supervised by a Level 2 practitioner or a Level 1 practitioner with at least 12 months’ experience.

In addition to the suggested competency assessments described below, clinicians
should keep a logbook of cases that may include some key images. This could
form part of an overall ultrasound portfolio that would include documentation
of theoretical and practical training and assessments, any related self-audit and
relevant Continuous Professional Development (CPD) teaching. Ideally, those
clinicians already practising without formal competency review should, for the
purposes of appraisal and good clinical governance, seek some form of recognition,
e.g. a letter from a recognised Level 2 practitioner or radiologist confirming their
competency.

Trainee pathway
Although ultrasound is yet to be formally incorporated into the RCoA curriculum, it
is being increasingly taught by ultrasound enthusiasts during trainees’ subspecialty
attachments. Much of the core learning can be self-driven through a variety of
educational media, or possibly by linking to one of the university courses with
Consortium for the Approval of Sonographic Education (CASE) approval [10].
Practical training should ideally be on a weekly basis and overseen by a named
supervisor. A logbook of all training cases should be kept and ideally should include
a number of more detailed case studies.

1. Basic knowledge/skills course (vide supra).
2. Practical training should be overseen by a clinical supervisor at least Level 1.
3. If practical training is not possible in the current training scheme, the trainee
should consider applying through the Deanery for OOPT or Out-of-Programme
Experience (OOPE) [11].

It is envisaged that all anaesthetists using ultrasound need to know and have the
basic skills and competencies outlined in this section. Thereafter, trainees will
follow the training curriculum, and everyone else will follow a clinically based
pathway.

Trainers
Level 1 training should be delivered by a Level 2 practitioner or a Level 1
practitioner with at least 12 months’ experience. The modular nature of training
allows trainers to be competent to train in a focused area of practice, e.g. vascular
access, without needing to be proficient in all areas of ultrasound practice. To
become a Level 2 practitioner, the appropriate level of experience and competence
must be demonstrated by completion of a logbook. A Level 2 practitioner will need
to undertake frequent examinations commensurate with their area of practice. In
addition, an existing Level 2 practitioner will need to confirm that they have the
required competencies. Although there is no formal recognition or certification of
‘level of training’, it is beholden upon the individual clinician to act responsibly and
meet the competencies necessary for the level of personal practice and revalidation
in the area of expertise. These can be enhanced by personal CPD and completion
and maintenance of a current log book. For trainees, assessment will be under the
auspices of their respective Colleges and approved trainers. For all others, it will be
up to individual departments to train and assess competencies using this document as a guide, the use of either individual hospitals’ assessment tools or College-based assessment tools are to be encouraged. Overall training will be achieved by a combination of CPD recognised external courses as well as ‘in-house’ training.

Basic skills and knowledge training

All clinicians should be familiar with some basic concepts and practicalities before placing an ultrasound probe on a patient with the intention of either making a diagnosis or performing a practical procedure. Ultrasound is different to other commonly used imaging modalities and as such an understanding of the basic physics is mandatory. The production of sound waves and their interaction with tissues is determined and limited by the laws of physics. Knowledge of these principles enables a clinician to optimise the image with respect to the ultrasound frequency, probe design, focus and gain. The resulting image is formed from reflection of the ultrasound waves from multiple tissue interfaces. This reflection is dependent on the angle of the ultrasound beam, the ultrasound frequency used and tissue characteristics, which will be weaker at increasing depths. Accurate interpretation of the image is made with a knowledge of the ultrasound appearances of the different tissue seen, e.g. veins and arteries, nerves, muscle, bone and pleura, and the common artefacts encountered. Interpretation of any ultrasound image is dependent on a thorough and detailed knowledge of the anatomy of the area of interest. It is important to understand that when using ultrasound, you ‘only see what you know’: the structures are not labelled and may appear different from individual to individual.

A variety of ultrasound machines is now available to clinicians, including small hand-held (pocket-size) devices, laptops and cart-based machines. These machines will have a variety of probes (hockey stick, linear, curvilinear and phased array) and preset imaging modalities (harmonic imaging, multibeam function, trapezoid display and 3D volume rendering). All this can lead to total confusion for an ultrasound novice; familiarity with the machine and its capabilities before use is vital.

Theoretical training

Theoretical training and assessment should be undertaken before using ultrasound in clinical situations, but sometimes this may go hand in hand with supervised clinical training. Preliminary theoretical training should cover relevant anatomy, the physics of ultrasound, machine familiarisation, image recording and reporting, artefacts and the relevance of other imaging modalities to ultrasound. This element of training may be delivered ‘in-house’ (using ‘Level 1 plus 12 months’ and Level 2 practitioners: anaesthetists, radiologists, ultrasonographers, cardiac physiologists, cardiologists or medical physicists), and by distance learning or web-based packages. The identity of who delivers this training is not as important as the assessment of the individuals to ensure that they have understood and can apply this knowledge to clinical practice.
2. Clinical governance and ultrasound

Keeping records
Logbook data of patients treated during training should be recorded in accordance with RCoA standards. It is recommended that electronic recordings of ultrasound examinations and anaesthetic or therapeutic interventions are made and retained during training. It is recommended that hospitals develop the routine electronic recording of all ultrasound examinations and anaesthetic or therapeutic interventions. Even after completing training in ultrasound-based skills, it is recommended that logbook data are continually recorded.

Audit
The success or failure of ultrasound-based interventions and complications of these interventions should be recorded to inform audit, appraisal and revalidation processes. When learning a new skill, cumulative sum control chart (CUSUM) analysis of success has been shown to be useful in the evaluation of ability and the need for supervision [12-14]. Even after training, a failure rate in excess of commonly accepted norms should cause the practitioner to seek advice and, if appropriate, remedial training.

Maintenance of skills
All manual skills need to be maintained, and it is recommended that after a break in the performance of an ultrasound-based intervention, the practitioner should be aware that their practical skills may have deteriorated. The individual has the responsibility to ensure that their skills are adequately maintained and should seek supervision where necessary. Having reached Level 1 competency, clinicians will need to maintain their ultrasound skills, minimising the time between successive examinations. The number of scans performed should be commensurate with their area and level of practice. It is recommended that CPD time is directed towards ultrasound, either through educational meetings, self audit, or case reviews with a mentor.

Clinical governance standards [15]
It is the responsibility of individual hospitals to establish clinical governance processes that will determine the experience and training appropriate for the unsupervised performance of ultrasound-based examinations or interventions. Practitioners should make themselves aware of these processes and should only practise within local clinical governance guidelines. It is recommended that within each department a designated consultant or permanent member of staff competent at Level 2 or 3 should oversee ultrasound training and be responsible for basic training and competency assessment. These activities should form part of their job plan, and time should be allocated within the job plan for the proper fulfilment of these duties.
3. Recommended essential ultrasound knowledge and skills

Basics of ultrasound
Basic components of an ultrasound machine.
Types of transducers and production of ultrasound with an emphasis on operator controlled variables.
Use of ultrasound controls – ‘knobology’.
An understanding of the frequencies used in medical ultrasound and the effect on image quality and penetration.
The interaction of ultrasound with tissue including biological effects.
Understanding of hyperechoic, hypo-echoic and anechoic and how it relates to tissues, structures and formation of the image.
Sonographic appearance of tissues, muscle, blood vessels, nerves, tendons, etc.
The safety of ultrasound and of ultrasound contrast agents.
The basic principles of real time and Doppler ultrasound including colour flow and power Doppler.
The recognition and explanation of common artefacts.
The storage and recording of still and video images, and integration with Picture Archiving and Communication Systems (PACS).

Administration
Image recording, storing and filing.
Reporting of images.
Medicolegal aspects – outlining the responsibility to practise within specific levels of competence and the requirement for training.
Understanding of sterility, health and safety, and machine cleaning.
Value and role of departmental and hospital protocols and guidelines.
Resource implication of ultrasound use.

Interpersonal and communications skills
Patient preparation and information.
Sensitive and effective communication with patient and family regarding ultrasound findings.
Explanation of findings and the complexities of ultrasound techniques in terms that the patient can understand.
Development of team leadership and management skills in developing and maintaining an ultrasound service.

Needling techniques
Understanding of terminology of planes of view, e.g. transverse, longitudinal.
Understanding of terminology of needle insertion: in-plane and out-of-plane.
Relationship of needle gauge, angle of insertion, depth and needle visibility.
Limitation of out-of-plane needle insertion with regard to visibility of needle tip.
Limitation of in-plane technique: beam width, parallelism. The use and limitations of needle guides and ultrasound visible needles. Knowledge of common causes of failure to see the needle during placement.

Practical
- Demonstration of knowledge of equipment selection (probe) and settings.
- Ergonomic position of patient and equipment.
- Pre-scan technique or understanding of benefits.
- Correct application of gel and probe contact with skin.
- Applications of probe cover, sheath or condom.
- Correct orientation of probe with screen image.
- Successful identification of the target within phantom or patient.
- Adjustment of resolution to improve image of structures.
- Correct use of depth and sector width controls to optimise structures being observed.
- Understanding of how to adjust the gain to optimise image quality and consistency.
- Demonstration of knowledge of the relevance of the angle of insonation to visibility of relevant structures (anisotropy).
- Correct use of focus or multiple focal zones to optimise image.
- Use of Doppler, including continuous wave and pulsed wave Doppler.
- Demonstration of the understanding of the longitudinal (long axis) and transverse (short axis) planes of view.
- Ability to store images.
- Cleaning the probe and machine before storing or use on another patient.

Needling
- Demonstration of understanding of the term ‘in-plane’ approach by placing needle under the long axis of the ultrasound probe.
- Demonstration of understanding of the term ‘out-of-plane’ approach by placing needle at 90° to the long axis of the ultrasound probe.
- Precise control of the probe and needle with minimal unintentional movement.
- Demonstration of techniques to maximise the visibility of the needle, parallelism, rotation, tissue movement and hydro-dissection.
- Positioning of the needle within a vascular structure using both in-plane and out-of-plane technique in a phantom or clinical situation.
- Demonstration of correct and appropriate spread of fluid or local anaesthetic around a nerve in either a phantom model or clinical situation.

Following completion of basic theoretical and practical training, some form of assessment of knowledge and practical skills should be completed. This can be achieved by either multiple-choice questions (MCQs) for the theoretical knowledge and formal Direct Observation of Procedural Skills (DOPS) or other ‘in house’ (individual hospital) assessment. In any case, some form of documentation should be filed within an individual’s appraisal record or logbook. In an ideal situation, this
initial assessment of practical skills should be performed on a phantom or model, but clinical needs will dictate whether this is the case or if the initial assessment should be done in a clinical situation. The following table of competencies, and all others provided in this document, should be assessed using some form of assessment such as DOPS. The current RCoA DOPS form is provided in Appendix 1.
Basic ultrasound competencies

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Demonstration of knowledge of the equipment and probe selection</td>
</tr>
<tr>
<td>2</td>
<td>Ergonomic positioning of self, patient, ultrasound machine and equipment</td>
</tr>
<tr>
<td>3</td>
<td>Correct use of gel and probe contact</td>
</tr>
<tr>
<td>4</td>
<td>Application of probe cover, sheath or condom to protect probe from contamination</td>
</tr>
<tr>
<td>5</td>
<td>Correct orientation of probe with screen image</td>
</tr>
<tr>
<td>6</td>
<td>Ergonomic probe handling and movement</td>
</tr>
<tr>
<td>7</td>
<td>Successful identification of target structure within phantom, model or patient</td>
</tr>
<tr>
<td>8</td>
<td>Adjustment of resolution to improve image of structures being imaged</td>
</tr>
<tr>
<td>9</td>
<td>Correct use of depth control to optimise structures being visualised</td>
</tr>
<tr>
<td>10</td>
<td>Understanding of how to adjust the gain to optimise image quality and consistency</td>
</tr>
<tr>
<td>11</td>
<td>Demonstration of knowledge of the relevance of the angle of insonation to visibility of relevant structures (anisotropy)</td>
</tr>
<tr>
<td>12</td>
<td>Correct use of focus or multiple focal zones to optimise image</td>
</tr>
<tr>
<td>13</td>
<td>Demonstration of use of Doppler for identification of vessels and the use of M mode, continuous wave Doppler and pulsed wave Doppler where appropriate</td>
</tr>
<tr>
<td>14</td>
<td>Demonstration of the understanding of the longitudinal (long axis) and transverse (short axis) planes of view</td>
</tr>
<tr>
<td>15</td>
<td>Demonstration of understanding of the term ‘in-plane’ approach by placing needle under the long axis of the ultrasound probe</td>
</tr>
<tr>
<td>16</td>
<td>Precise control of the probe and needle with minimal unintentional movement</td>
</tr>
<tr>
<td>17</td>
<td>Ability to save and store images transfer to PACS or transfer to encrypted memory stick</td>
</tr>
<tr>
<td>18</td>
<td>Cleaning of probe and machine after use to minimise transfer of infection; storage of probe and machine to minimise damage</td>
</tr>
</tbody>
</table>
4. Regional anaesthesia and pain medicine

Over the last five years, ultrasound has revitalised and rejuvenated interest in regional anaesthesia amongst anaesthetists in general and trainees in particular. The availability of portable, high-resolution machines driven by NICE guidance on the insertion of central venous catheters [1] has made it possible for most anaesthetists to have easy access to a machine. Ultrasound allows direct observation of target nerves and their surrounding structures, recognition of anatomical variance, real-time guidance of the needle and direct observation of the spread of local anaesthetic around the nerve. This is something that established techniques (peripheral nerve stimulation or paraesthesia) cannot achieve, and improved success rates, decreased volumes of local anaesthetic solutions, decreased incidence of side effects and improved patient comfort have all been demonstrated when using ultrasound.

Ultrasound-guided regional anaesthesia (UGRA) as a technique is rapidly gaining momentum as shown by the increasing numbers of publications and advertised workshops. A recent NICE interventional procedure guidance [3] supports the use of ultrasound guidance in regional anaesthesia, stating “that clinicians wishing to perform this procedure should be experienced in regional nerve blocks and trained in ultrasound guided techniques”. This has been supported by American Society of Regional Anesthesia and Pain Medicine (ASRA) and the European Society of Regional Anaesthesia and Pain Therapy (ESRA) Joint Committee recommendations for education and training in ultrasound guided regional anaesthesia [16]. NICE has also produced guidance on the use of ultrasound and epidural catheterisation [2]. The natural progression from regional anaesthesia to pain medicine has seen the growing popularity of the use of ultrasound in modern pain management [17-19].

Ultimately, it will be up to practitioners themselves to satisfy not only clinical governance directives but also the rigours of appraisal and revalidation. This will almost certainly require the keeping of logbooks and competency curves. As time passes, more people will have completed their ultrasound training as part of basic anaesthetic training and the prospect of a more robust certification process can be realised as part of accreditation.
Curriculum for regional anaesthesia

Basic knowledge and skills
See pages 12-15.

Practice

Level 1 practice
Superficial cervical plexus block
Interscalene brachial plexus block
Supraclavicular block
Infraclavicular block
Suprascapular block
Axillary brachial plexus block
Blockade of the terminal peripheral nerves of the arm
Rectus sheath block
Ilio-inguinal / iliohypogastric block
Transversus abdominis plane (TAP) block
Fascia iliaca block
Femoral nerve block
Obturator nerve block
Saphenous nerve block
Lateral cutaneous nerve of thigh block
Sciatic (trans-gluteal, sub-gluteal, anterior or mid-thigh) nerve block
Popliteal sciatic nerve block
Ankle block
Blockade of the terminal peripheral nerves of the leg
Epidural – assessment of spinal level, epidural depth and direction
Caudal
Catheter techniques

Level 2 practice
Lumbar plexus block
Deep cervical plexus block (cervical nerve root)
Paravertebral block / intercostal nerve block
Real-time ultrasound-guided epidural puncture and spinal anaesthesia

Anatomy

Level 1 anatomy
Detailed knowledge of relevant sectional anatomy:
Brachial plexus
Lumbosacral plexus
Terminal peripheral nerves of the arm and hand
Terminal peripheral nerves of the abdomen
Terminal peripheral nerves of the leg and foot

Level 2 anatomy
Additional knowledge of sectional anatomy:

Brachial plexus
- Interscalene region
- Supraclavicular region
- Axillary region

Lumbosacral plexus
- Posterior abdominal wall, lumbar plexus and psoas muscle
- Femoral triangle and anterior thigh, including obturator nerve and saphenous nerve
- Buttock and upper thigh
- Popliteal fossa
- Ankle and foot

Chest and anterior abdominal wall
- Rib and intercostal space
- Anterior abdominal wall: rectus sheath; internal and external oblique; and transversus abdominis
- Inguinal region

Spine
- Cervical spine, facet joints, cervical roots
- Thoracic spine, facet joints and paravertebral space
- Lumbar spine, facet joints, spinous process, intraspinal space and intralaminar space
- Cervical, thoracic, lumbar and caudal epidural space
- Sacrum and sacral hiatus

Pathology

Regional anaesthesia is primarily the practical performance of standard techniques with the sole purpose of anaesthesia and analgesia for surgery and postoperative pain control. Specific associated pathologies, e.g. venous thrombosis and thyroid cysts, are not deliberately sought but may be noticed or detected by some clinicians.

Level 1 pathology
Understanding of the common anatomical variations of the brachial and lumbosacral plexuses.

Level 2 pathology
Knowledge of the common associated pathologies that may be seen with respect to peripheral nerves and the surrounding structures.
Pain
Specific and additional knowledge will be needed for the practice of pain medicine.

Competencies

The technical skills needed to perform any form of UGRA and pain medicine technique are the same independent of the overall level of training. The ability to see the nerve, control needle passage and observe the needle/nerve interface whilst injecting local anaesthetic are core to performing any block. The level of training is dependent on the technique used: some of these are easily learned with few complications (Level 1: axillary); others require improved scanning skills and knowledge (Level 2: paravertebral). The individual levels are arbitrary distinctions between those that will be required for CCT and those that can be achieved within a comprehensive training programme, and the distinctions should be viewed as guidance only. Level 1 training is deliberately minimalistic so that all trainees can achieve this level of training irrespective of the hospitals visited within their rotations.

Level 1 competencies

Patient
- Performance of gentle ultrasound examinations, provide appropriate sedation.
- Demonstration of proper patient selection.
- Use of appropriate monitoring to Association of Anaesthetists of Great Britain & Ireland (AAGBI) standards.
- Demonstration of proper nerve location techniques.
- Performance of effective and safe nerve block techniques.

Ultrasound knowledge
- Understanding of general principles of ultrasound physics.
- Understanding of benefits and limitations of UGRA techniques.
- Understanding of the differences between in-plane and out-of-plane needling techniques and their indications and limitations.
- Understanding of key artefacts and pitfalls of UGRA.
- Development of an intimate knowledge of the 2D ultrasound anatomy of the major neurovascular structures of the upper and lower extremities.
- Understanding of common anatomical variations associated with the neurovascular and musculoskeletal structures of the upper and lower extremities.
- Understanding of the clinical applications and uses of colour Doppler in UGRA.
- Understanding of and be able to use ultrasound equipment.
- Demonstration of knowledge of sterility, infection control and equipment cleaning.
- Establishment of familiarity with the scientific literature pertaining to UGRA.
- Demonstration of knowledge and learning of commonly used UGRA techniques.
Interpersonal and communications skills
Sensitive and effective communication with patients and families.
Providing explanation of the procedure in terms that the patient can understand,
outlining the benefits, risks and complications.
Demonstration of effective communication with anaesthetic colleagues,
operating departmental practitioners (ODPs) and supporting nursing and
ancillary staff.

Level 2
Professionalism and learning
Development of the skill to manage a regional anaesthetic service effectively.
Understanding of the costs relating to ultrasound regional anaesthetic service.
Remaining open to constructive criticism.
Awareness of the increasing literature relating to UGRA and its value.
Partaking in research and audit of UGRA practice.
Assessment checklist – regional anaesthesia

| Demonstration of appropriate attitude and professional manner |
| Explanation of procedure, risks and complications to patient as appropriate |
| Checking patient’s details and entering them into record and machine as appropriate |
| Confirmation of indication and checking of any supportive imaging |
| Positioning of patient and machine ergonomically |
| Selection of appropriate probe and optimisation of machine settings |
| Identification of nerve or plexus using a preliminary scan |
| Optimisation of the image by adjustment of gain, depth and focus |
| Demonstration of good needling technique with maintenance of the needle tip within the scan plane at all times |
| Confirmation of position of needle with respect to nerve |
| Identification of spread of local anaesthetic perineurally, NOT intravascular |
| Demonstration of spread of local anaesthetic around the nerve or nerves |
| Performance of technique safely and effectively |
| Attention to sterility with respect to procedure, patient and machine |
| Adequate documentation and storage of images and scans as appropriate |
| Provision of information to patient and reporting of findings where appropriate |
| Identification of whether a further scan or alternative imaging is indicated |
| Cleaning of equipment and storage to minimise damage |
5. Vascular procedures

The use of ultrasound to guide vascular access is associated with a higher first-pass success and a reduced rate of complications. This led NICE to recommend that ultrasound guidance be the preferred method for insertion of central venous catheters (CVC) into the internal jugular vein and that ultrasound should be considered in most clinical circumstance where CVC insertion is necessary, either electively or in an emergency [1]. Following this guidance, the use of ultrasound to guide CVC placement has increased markedly in recent years as clinicians have realised its benefits in terms of ensuring the success of placement while minimising the risk of complications [20]. Many experienced clinicians now use ultrasound successfully to guide all CVC placements regardless of site or urgency such that it is becoming a standard of care. However, the safe use of ultrasound to guide CVC placement requires appropriate training and experience to achieve competence.

Some clinicians limit the use of ultrasound to confirm anatomy while they continue to perform a standard landmark technique when inserting the CVC. This approach is not recommended, as it does not allow the full benefits of ultrasound guidance to be realised. It is recommended that when ultrasound is used to assist CVC placement, it should be used to guide needle placement into the vein in real time.

There is a number of other areas of practice relevant to anaesthesia and intensive care in which vascular ultrasound may have a useful clinical role. These include the use of ultrasound to diagnose venous thrombosis, dynamic imaging of the inferior vena cava to assess circulating volume status and specialist applications such as transcranial Doppler. These are considered advanced areas of practice within anaesthesia and intensive care medicine in which clinicians with a special interest in ultrasound may wish to gain the necessary competencies.
Curriculum for vascular procedures

Basic knowledge and skills
See pages 12-15.

Practice

Level 1 practice
 Cannulation of internal jugular vein
 Cannulation of femoral vessels: vein and artery
 Cannulation of peripheral veins and arteries
 Insertion of peripheral inserted central catheter

Level 2 practice
 Cannulation of axillary and subclavian vein
 Assessment and diagnosis of venous thrombosis (upper and lower limb)
 Assessment of volume status from dynamic ultrasound imaging of inferior vena cava (see section on abdominal ultrasound)

Level 3 practice
 Specialist vascular examinations, e.g. transcranial Doppler, renal artery Doppler

Anatomy

Level 1 anatomy
 Vascular access
 Cross-sectional and ultrasonographic anatomy of:
 • Neck (carotid artery and jugular vein)
 • Femoral vessels
 • Upper limb vessels
 • Common anatomical variations

Level 2 anatomy
 Axillary and subclavian vessels

Venous thrombosis
 Vascular sectional and ultrasound anatomy of the arms and legs including common anatomical variants

Pathology

Level 1 pathology
 Recognition of thrombosis and haematoma in major vessels, e.g. internal jugular and femoral veins.
Level 2 pathology
Ultrasonic appearance of peripheral venous thrombosis.

Competencies

Level 1 competencies
Identification of vein and artery in transverse and longitudinal scan.
Differentiation of the appearance of arteries and veins with 2D ultrasound.
Use of colour flow Doppler.
Identification of common anatomical variations.
Preparation of equipment to maintain sterility during ultrasound-guided cannulation.
Undertaking of ultrasound-guided cannulation in real time maintaining sterility.
Identification of needle tip with transverse and longitudinal views.
Identification of guide wire within vessel.
Insertion of appropriate sized cannula into vessel to correct length and secure fixation.

Level 2 competencies
Identification of deep veins in leg: common femoral, femoral and popliteal veins.
Assessment of lumen of veins in terms of diameter, echogenicity and compressibility.
Use of continuous wave Doppler to demonstrate arterial and venous waveforms.
Use of colour flow and pulsed wave Doppler to demonstrate patency of flow with phasic variation with respiration and augmentation of flow following distal compression.
Sequential scanning to demonstrate patency of common femoral, femoral into lower thigh and popliteal veins.
Identification of common pathology: venous thrombosis, haematoma.
Identification and assessment of external iliac veins.
Identification and assessment of upper limb veins.
Assessment checklist – vascular procedures

| Demonstration of appropriate attitude and professional manner |
| Explanation of procedure, risks and complications to patient as appropriate |
| Checking patient’s details/entry into machine as appropriate |
| Confirmation of indication and checking of any supportive imaging |
| Positioning of patient and machine ergonomically |
| Selection of appropriate probe and optimisation of machine settings |
| Identification of the vein and artery in transverse and longitudinal scan |
| Confirmation of patency and absence of thrombus or haematoma by compression, Doppler |
| Undertaking of ultrasound guided cannulation in real time maintaining sterility |
| Identification of needle tip using in-plane or out-of-plane technique |
| Identification of guide wire within vein |
| Insertion of appropriate sized cannula into vessel to correct length and secure |
| Performance of technique safely and effectively |
| Attention to sterility with respect to procedure, patient and machine |
| Adequate documentation and storage of images and scans as appropriate |
| Provision of information to patient and reporting of findings where appropriate |
| Identification of whether a further scan or alternative imaging is indicated |
| Cleaning of equipment and storage to minimise damage |
6. Thoracic ultrasound

The use of point of care ultrasound for assessing and treating thoracic pathology in the intensive care environment has increased significantly in the last decade. Not only can it answer queries arising from standard chest radiographs, e.g. distinguishing effusion from consolidation from collapse, it can also be used to make primary diagnoses such as pneumothorax and pulmonary oedema or the interstitial syndrome. As well as a diagnostic tool, ultrasound is increasingly used to guide invasive procedures relating to the thorax, namely diagnostic thoracocentesis, chest drain insertion, pleural biopsy and percutaneous tracheostomy [21]. There is now an increased focus on the use of ultrasound to guide chest drain insertion for pleural fluid as a result of a rapid response report by the National Patient Safety Agency in 2008 [22], with subsequent guidelines issued by the British Thoracic Society [23-27].

As a technique, thoracic ultrasound is relatively straightforward to perform. However, it fosters a large number of acoustic artefacts. Some of these can aid and some can hinder diagnosis. Appropriate training is therefore mandatory in order to avoid serious interpretation errors. Level 1 training in thoracic ultrasound is not mandatory for the CCT in Anaesthetics and is not part of the RCoA curriculum.
Curriculum for thoracic ultrasound

Basic knowledge and skills
See pages 12–15.

Practice

Level 1 practice
Systematic examination of the normal thorax
Assessment and diagnosis of pleural effusions
Ultrasound guided thoracocentesis and chest drain insertion
Use of ultrasound to diagnose pneumothorax

Level 2 practice
Assessment and diagnosis of pleural pathology
Assessment and diagnosis of lung pathology
Assessment of diaphragmatic function
Ultrasound guided pleural and lung biopsy
Ultrasound guided percutaneous tracheostomy and cricthyroidotomy
Identification of the cricoid cartilage and extrathoracic tracheal rings
Knowledge of the appearance of normal thyroid versus goitre and Doppler assessment of vascularity

Anatomy

Level 1 anatomy
Detailed knowledge of relevant sectional anatomy
Right and left hemidiaphragm
Chest wall layers
Ribs and intercostal spaces
Surface anatomy of pleural reflections
Heart
Liver, spleen and kidneys
Thyroid

Level 2 anatomy
Additional knowledge of sectional anatomy
Supraclavicular region
Anterior and superior mediastinum
Laryngeal cartilages and extrathoracic trachea
Thyroid
Pathology

Level 1 pathology
 Pleural effusion
 Pleural thickening
 Pneumothorax
 Consolidated lung
 Atelectasis

Level 2 pathology
 Interstitial thickening
 Pulmonary mass/abscess
 Paralysed diaphragm
 Mediastinal and pleural masses
 Multinodular goitre

Competencies

Level 1 competencies
 Performance of systematic examination of thorax identifying normal structures including diaphragm, liver and spleen.
 Identification of ultrasound appearances of normal aerated lung including:
 • Diaphragmatic movement
 • Pleural line and gliding sign
 • Normal aerated lung (including A-lines and B-lines artefacts).
 Recognition of pleural fluid:
 • Appearances suggesting transudate, exudate and loculation
 • Assessment of size of effusion
 • Differentiation between pleural thickening and effusion
 • Distinguishing small or loculated pleural fluid from pleural thickening.
 Recognition of consolidated lung:
 • Distinguishing atelectasis from consolidation: with and without air bronchograms
 • Recognition of signs of pneumothorax including lung point sign and appearance on M-mode.
 Recognition of heart, liver and spleen.
 Performance of ultrasound-guided (direct and indirect) thoracocentesis.
 Performance of ultrasound-guided chest drain insertion and identification of when to use a direct or indirect approach.

Level 2 competencies
 Differentiation between consolidated lung, abscess and pulmonary mass.
 Differentiation of types of pleural thickening, e.g. pleural masses and plaques.
 Use of colour/power Doppler to help distinguish between pleural and lung pathologies.
Familiarity with the altered artefact patterns seen with pulmonary oedema and interstitial syndrome.

Identification of the cricoid cartilage and extrathoracic tracheal rings.

Knowledge of the appearance of normal thyroid versus goitre and Doppler assessment of vascularity.

Performance of ultrasound-guided percutaneous tracheostomy or cricothyrotomy.
Assessment checklist – thoracic ultrasound

<table>
<thead>
<tr>
<th>Demonstration of appropriate attitude and professional manner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explanation of procedure, risks and complications to patient as appropriate</td>
</tr>
<tr>
<td>Checking patient’s details/entry into machine as appropriate</td>
</tr>
<tr>
<td>Confirmation of indication and check any supportive imaging</td>
</tr>
<tr>
<td>Positioning of patient and machine ergonomically</td>
</tr>
<tr>
<td>Selection of appropriate probe and optimisation of machine settings</td>
</tr>
<tr>
<td>Correct identification of normal lung, pleural line and movement</td>
</tr>
<tr>
<td>Demonstration of pleural sliding in 2D and M mode</td>
</tr>
<tr>
<td>Identification of normal diaphragm, liver and spleen</td>
</tr>
<tr>
<td>Identification of pleural effusion</td>
</tr>
<tr>
<td>Differentiation of pleural effusion from intra-abdominal fluid (ascites)</td>
</tr>
<tr>
<td>Description of appearances of transudate and exudate</td>
</tr>
<tr>
<td>Demonstration of how volume of effusion may be estimated</td>
</tr>
<tr>
<td>Use of ultrasound to identify appropriate site for drainage of effusion</td>
</tr>
<tr>
<td>Demonstration of ultrasound guided thoracocentesis</td>
</tr>
<tr>
<td>Identification of consolidation</td>
</tr>
<tr>
<td>Identification of atelectasis</td>
</tr>
<tr>
<td>Recognition of signs of pneumothorax including lung point sign, appearance in M mode</td>
</tr>
<tr>
<td>Demonstration of ultrasound guided chest drain insertion</td>
</tr>
<tr>
<td>Performance of technique safely and effectively</td>
</tr>
<tr>
<td>Attention to sterility with respect to procedure, patient and machine</td>
</tr>
<tr>
<td>Adequate documentation and storage of images and scans as appropriate</td>
</tr>
<tr>
<td>Informing patient and reporting findings where appropriate</td>
</tr>
<tr>
<td>Identification of whether a further scan or alternative imaging is indicated</td>
</tr>
<tr>
<td>Cleaning of equipment and storage to minimise damage</td>
</tr>
</tbody>
</table>
7. Abdominal ultrasound

The ability to detect free intraperitoneal fluid, assess the aortic diameter, assess the inferior vena cava (IVC), and measure bladder volume is extremely valuable. The finding of free fluid may have significance for patient management, especially following trauma. The purpose of ultrasound in the initial assessment of abdominal trauma is solely to document the presence of free intra-peritoneal fluid. In the context of abdominal trauma this is assumed to be blood. There is no attempt to identify specific organ injuries as ultrasound is not accurate in the early assessment of solid or hollow viscus injury. When abdominal scanning techniques are combined with basic cardiac scanning, the combination is known as ACES (Abdominal and Cardiac Evaluation with Sonography in shock). Fluid assessment is also known as FAST (Focused Assessment with Sonography in Trauma) if in a trauma setting. If one adds assessment of the upper pleura for pneumothorax, this is known as EFAST (Extended FAST) [28,29]. Level 1 training in abdominal ultrasound is not mandatory for a CCT in Anaesthetics and is not part of the RCoA curriculum.
Curriculum for abdominal ultrasound

Basic knowledge and skills
 See pages 12–15.

Practice

Level 1 practice
 Detection of free intraperitoneal fluid
 Assessment of the abdominal aorta
 Assessment of the IVC including filling pressures
 Bladder volume assessment

Level 2 practice
 Assessment of the gall bladder
 Assessment of the kidneys

Level 3 practice
 Comprehensive abdominal scanning

Anatomy

Level 1 anatomy
 Aorta and IVC
 Liver
 Morrison pouch and right costophrenic pleural recess / splenorenal recess
 and left costophrenic pleural recess
 Rectovesical, vesico-uterine and recto-uterine pouches
 Bladder

Level 2 anatomy
 Kidney
 Liver (detailed)
 Spleen

Pathology

Level 1 pathology
 Intraperitoneal and pleural fluid
 Aortic aneurysm and rupture
 IVC collapse greater than 50%
 Pneumothorax
Level 2 pathology

Competencies

Level 1 competencies
Recognition of what is normal and abnormal in standard abdominal views. Identification of the aorta and IVC in transverse and longitudinal sections. Recognition of the main features of the aorta, and know how to measure it, i.e. antero-posterior diameter, outer anterior to outer posterior layer, distinction from the IVC. Ability to carry out scanning in three planes. Ability to use the machine to determine bladder volume. Recognition of a catheter balloon within the bladder. Knowledge of when to repeat the scan, and the value of repeat scans.

Level 2 competencies
Ability to assess the kidneys and recognise hydronephrosis. Knowledge of how to image the gall bladder and measure wall thickness. Assessment of the common bile duct for dilatation. Assessment of the superior mesenteric artery for patency and flow. Application of these findings to the clinical context appropriately.
Assessment checklist – abdominal ultrasound

<table>
<thead>
<tr>
<th>Demonstration of appropriate attitude and professional manner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explanation of procedure, risks and complications to patient as appropriate</td>
</tr>
<tr>
<td>Checking patient’s details/entry into machine as appropriate</td>
</tr>
<tr>
<td>Confirmation of indication and checking any supportive imaging</td>
</tr>
<tr>
<td>Positioning of patient and machine ergonomically</td>
</tr>
<tr>
<td>Selection of appropriate probe and optimising machine settings: gain, depth and focus</td>
</tr>
<tr>
<td>Demonstration of Morrison’s pouch and right costo-phrenic pleural recess</td>
</tr>
<tr>
<td>Demonstration of the spleno-renal interface and left costo-phrenic pleural recess</td>
</tr>
<tr>
<td>Identification of the bladder</td>
</tr>
<tr>
<td>Demonstration of potential fluid in the pelvis</td>
</tr>
<tr>
<td>Demonstration of pericardial views and cardiac motion</td>
</tr>
<tr>
<td>Application of examination in an Advanced Life Support (ALS) setting</td>
</tr>
<tr>
<td>Demonstration of the pleural space and can identify fluid</td>
</tr>
<tr>
<td>Performance of technique safely and effectively</td>
</tr>
<tr>
<td>Attention to sterility with respect to procedure, patient and machine</td>
</tr>
<tr>
<td>Adequate documentation and storage of images and scans as appropriate</td>
</tr>
<tr>
<td>Informing patient and reporting of findings where appropriate</td>
</tr>
<tr>
<td>Identification of whether a further scan or alternative imaging is indicated</td>
</tr>
<tr>
<td>Cleaning of equipment and storage to minimise damage</td>
</tr>
</tbody>
</table>
8. Echocardiography

The application of echocardiography (transthoracic and transoesophageal echocardiography – TTE and TOE) in the critical care arena has been well recognised for some time, expanding beyond cardiothoracic critical care to include diagnosis and monitoring on the general intensive care unit (ICU) [30]. When dealing with critically ill patients, two clinical scenarios need to be considered, which may be regarded as corresponding to Level 1 and Level 2 proficiency.

Level 1
In the peri-resuscitation setting, relatively simple information obtained using TTE may profoundly affect patient management. Here, a basic focused scan may be appropriate, which when performed during active resuscitation must be strictly ALS-compliant [31]. There is accumulating evidence in the literature that this can be achieved with appropriate training of novice practitioners [32, 33]. Several courses exist to train the novice practitioner to this level, including FEEL-UK, which is endorsed by the British Society of Echocardiography (BSE) and supported by the Resuscitation Council (UK) [34, 35]. Beyond peri-resuscitation echocardiography, the requirements for practitioners in different specialties begin to diverge. Practitioners already proficient in peri-resuscitation echocardiography may wish to develop their skills for use in trauma, emergency medicine or critical care, depending upon their base specialty [36], may do additional training to achieve accreditation in echocardiography (Level 2 – see below). For these and others keen to extend their skills, courses and training programmes such as FAST, FATE (Focused Assessment by Transthoracic Echo), CAUSE (Cardiac Arrest Ultra-Sound Examination) and FUSE (Focused Ultrasound and Echocardiography) provide a framework within which to achieve this in the UK [37- 40].

Level 2
As defined elsewhere, Level 2 training includes the ability to perform the complete range of echocardiographic examinations, recognise almost all cardiac pathology and to use echocardiography to guide interventional procedures. In the critically ill patient, Level 2 echocardiography can provide information about cardiac function and the causes of inadequate cardiac output, guide therapeutic interventions and monitor the effects of any treatment instigated [41- 43]. This may be focused or comprehensive, and require TTE or TOE depending upon the clinical question being asked. This level of practice is equivalent to accreditation in echocardiography, i.e. the most basic level at which a practitioner is judged to be capable of independent practice [35]. Echocardiography training is not mandatory for a CCT in Anaesthetics or General Internal Medicine, and is not part of the RCoA or Royal College of Physicians (RCP) curriculum.
Curriculum for echocardiography

Basic knowledge and skills
See pages 12-15.

Practice

Level 1 practice
Performance of a basic echocardiography examination of a normal heart.
Assessment and diagnosis of significant cardiac pathology including severe left ventricular dysfunction, right ventricular dysfunction (massive pulmonary embolus), pericardial effusion and tamponade, and hypovolaemia.
Performance of an ALS compliant examination when indicated.

Level 2 practice
Performance of focused or comprehensive echocardiography examinations in all relevant situations (emergency care, peri-operative and intensive care, high dependency unit and coronary care unit) as appropriate for the patient and clinical scenario.
Recognition of almost all cardiac pathologies.
Use of echocardiography to guide interventional procedures and monitor and assess the effects of interventions and therapies.

Anatomy

Level 1 anatomy
Basic anatomy of the heart, coronary arteries and great vessels.
Coronary anatomy and correlation with myocardial territories supplied (2D views).
Left and right ventricular anatomy and correlation with 2D views.
Basic heart valve anatomy and correlation with 2D views.
IVC anatomy and correlation with 2D views.
Normal changes in IVC dimensions in response to spontaneous respiration and ventilation.
Basic anatomy of the pericardium and normal pericardial space, including differentiation from pleural space.

Pathology

Level 1 pathology
Dilated left ventricle
Grossly underfilled left ventricle
Significantly impaired left ventricular systolic function
Severe wall motion abnormalities
Significant right ventricular dilatation
Features of pulmonary hypertension and massive acute pulmonary embolism
Features of significant hypovolaemia
Fixed, dilated IVC and its causes
Differentiation of pericardial collection and tamponade

Competencies

Level 1 competencies
Demonstration of the four basic echocardiography scan planes:
• Parasternal long axis view
• Parasternal short axis view including aortic valve, mitral valve and papillary muscles
• Apical 4-chamber view
• Subcostal view

Recognition of normal cardiac structures and important landmarks in all four scan plane: left atrium, right atrium, inter-atrial septum, left ventricle, right ventricle, inter-ventricular septum, aortic valve, ascending aorta, mitral valve, tricuspid valve, inferior vena cava, descending aorta, pericardium.
Understanding of and performance of measurements of global systolic function: eyeballing, MAPSE (mitral annular plane systolic excursion), TAPSE (tricuspid annular plane systolic excursion), fractional shortening and ejection fraction using Simpson’s rule.

Recognition of a dilated left ventricle.
Recognition of a severely underfilled left ventricle, and differentiate from severe left ventricular hypertrophy.
Differentiation of normal from significantly impaired left ventricular systolic function and severe wall motion abnormalities.
Differentiation of normal from significantly impaired left ventricular systolic function.

Recognition of features of pulmonary hypertension.
Recognition of a significantly dilated right ventricle.
Recognition of significant right ventricular dysfunction.
Recognition of features of acute, massive pulmonary embolism.
Recognition of features of pulmonary hypertension.
Recognition of features of significant hypovolaemia.
Recognition of a fixed, dilated IVC.
Identification of a pericardial collection.
Differentiation of between pleural and pericardial collection.
Identification of right ventricular diastolic collapse.
Identification of swinging heart.
Technique of pericardiocentesis, including echo-guidance.
Ability to differentiate asystole from fine ventricular fibrillation.
Ability to differentiate pulseless electrical activity (PEA) from pseudo-PEA.

ALS peri-resuscitation competencies
Knowledge of current ALS algorithm and when to apply FEEL.
Ability to follow the steps required to perform FEEL during cardiopulmonary resuscitation in an ALS complaint manner.
Ability to follow the steps required if an inadequate echocardiography window is not obtained.
Ability to obtain cardiac images within 10 s.
Ability to interpret images in the context of a cardiac arrest scenario.
Ability to communicate findings clearly to resuscitation team leader.
Assessment checklist – echocardiography

| Demonstration of appropriate attitude and professional manner |
| Explanation of procedure, risks and complications to patient as appropriate |
| Checking patient’s details/entry into record as appropriate |
| Confirmation of indication and check any supportive imaging |
| Positioning of patient and machine ergonomically |
| Selection of appropriate probe and optimising machine settings |
| Demonstration of all four standard views: |
| - Parasternal long axis |
| - Parasternal short axis |
| - Apical four chamber |
| - Sub-costal |
| Recognition of normal cardiac structures and landmarks in all four major scan planes |
| Left ventricle – recognition of dilated or grossly under filled left ventricle and normal from significantly impaired function |
| Right ventricle – recognition of significant right ventricular dilatation and features of acute pulmonary hypertension |
| Inferior vena cava (IVC) – recognition of signs of significant hypovolaemia and detection of a fixed dilated IVC |
| Pericardium – recognition of a pericardial collection, distinguishing this from pleural effusion, recognition of right ventricular collapse and a ‘swinging heart’ |
| Performance of trans-thoracic ECHO in compliance with an ALS-algorithm |
| Performance of technique safely and effectively |
| Attention to sterility with respect to procedure, patient and machine |
| Adequate documentation and storage of images and scans as appropriate |
| Informing patient and reporting findings where appropriate |
| Identification of whether a further scan or alternative imaging is indicated |
| Cleaning of equipment and storage to minimise damage |
Level 2 accreditation
A proportion of trainees may wish to extend their echocardiographic skills further to be competent to perform a comprehensive or focused study either on the ICU, or during general anaesthesia of the high-risk patient. Before 2010 the only accredited examination for transthoracic echocardiography in the UK was the ‘Accreditation in Adult Echocardiography’, administered and awarded by the BSE and for transoesophageal echocardiography, the ‘ACTA/BSE TOE accreditation’. However, the BSE has been working together with key stakeholders and has now introduced an accreditation specifically for critical care. The development of this accreditation is analogous to those that were developed for cardiothoracic anaesthetists wishing to obtain TOE accreditation. As with other areas outlined in this document, Level 2 practice in echocardiography is likely to require a period of additional training and experience beyond that obtained during normal postgraduate specialist training [44].
9. References

Appendix 1 RCoA Direct Observation of Procedural Skills [DOPS]
Assessment Form

Please complete the question using a cross (x). Please use black ink and CAPITAL LETTERS

<table>
<thead>
<tr>
<th>Trainee’s surname</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Trainee’s forename(s)</td>
<td></td>
</tr>
<tr>
<td>GMC number</td>
<td>GMC NUMBER MUST BE COMPLETED</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Code number</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observed by</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GMC number</td>
<td>GMC NUMBER MUST BE COMPLETED</td>
</tr>
<tr>
<td>Date</td>
<td></td>
</tr>
</tbody>
</table>

Assessment:

<table>
<thead>
<tr>
<th>Practice was satisfactory</th>
<th>Assessor’s Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practice was unsatisfactory</td>
<td>Assessors Signature</td>
</tr>
</tbody>
</table>

If the performance was judged to be unsatisfactory, you must tick the boxes on the reverse of this form to indicate which areas of performance you judged to be unsatisfactory.

Example of good practice were:

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>

Areas of practice requiring improvement were:

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>

Further learning and experience should focus on:

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>
If you have rated the performance unsatisfactory please indicate which elements were unsatisfactory:

<table>
<thead>
<tr>
<th>Issue</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Did not understand the indications and contraindications to the procedure.</td>
<td></td>
</tr>
<tr>
<td>Did not properly explain the procedure to the patient.</td>
<td></td>
</tr>
<tr>
<td>Does not understand the relevant anatomy.</td>
<td></td>
</tr>
<tr>
<td>Failed to prepare properly for the procedure.</td>
<td></td>
</tr>
<tr>
<td>Did not communicate appropriately with the patient or staff.</td>
<td></td>
</tr>
<tr>
<td>Aseptic precautions were inadequate.</td>
<td></td>
</tr>
<tr>
<td>Did not perform the technical aspects of the procedure correctly.</td>
<td></td>
</tr>
<tr>
<td>Failed to adapt to unexpected problems in the procedure.</td>
<td></td>
</tr>
<tr>
<td>Failed to demonstrate adequate skill and practical fluency.</td>
<td></td>
</tr>
<tr>
<td>Was unable to properly complete the procedure.</td>
<td></td>
</tr>
<tr>
<td>Did not properly complete relevant documentation.</td>
<td></td>
</tr>
<tr>
<td>Did not issue clear post-procedure instructions to patient and/or staff.</td>
<td></td>
</tr>
<tr>
<td>Did not maintain an appropriate professional demeanor.</td>
<td></td>
</tr>
</tbody>
</table>